Supporting Information

Adsorptive removal of Ni(II) ions from aqueous solution and the synthesis of a Ni-doped ceramic: An efficient enzyme carrier exhibiting enhanced activity of immobilized lipase

Yanning Qu, Zhongjie Wu, Renliang Huang, Wei Qi, Rongxin Su and Zhimin He

*Tianjin Engineering Center of Biomass-derived Gas/Oil Technology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
*b State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
*c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.
*d Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China.

† These authors contributed equally to this work.

E-mail: tjuhrl@tju.edu.cn (R. H.); qiwei@tju.edu.cn (W. Q.)

Tel: +86 22 27407799. Fax: +86 22 27407599.
Fig. S1. The Removal efficiency of Ni$^{2+}$ controlled by the volume ratio of chitosan/TPP.

Fig. S2. Photograph of the process of Ni$^{2+}$ removal. 1.0 % (w/w) chitosan concentration, 1:1 of the mass ratio of chitosan/TPP at 10 $^\circ$C.
Fig. S3. FT-IR spectrums of chitosan nanoparticle and chitosan nanoparticle containing Ni$^{2+}$
during the removal process of Ni$^{2+}$.

Fig. S4. Schematic of histidine residues on lipase surface (lipase from porcine pancreas)
Fig. S5. The loading amount of lipase with increasing lipase concentrations

Fig. S6. The accumulative loss of lipase from Ni-CP to aqueous solution during the recycling use