Supplementary Information

High Yield Synthesis Of Amine Functionalized Graphene Oxide And Its Surface Properties

Souvik Chakraborty¹, Saikat Saha¹, V.R. Dhanak², Kallolmay Biswas³, Michel Barbezat⁴, Giovanni P. Terrasi⁴, and Amit K. Chakraborty¹*

¹Carbon Nanotechnology Lab, Department of Physics, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, West Bengal, India
²Department of Physics and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool, L69 3BX, United Kingdom
³Jubilant Chemsys Ltd., Sector 58, B-34, Noida-201301, Uttar Pradesh, India.
⁴Laboratory for Mechanical Systems Engineering, Empa, Swiss Federal Laboratories for Materials Science & Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

*Email of corresponding author: amitkc61@gmail.com

S1 - NMR Analysis

Fig. S1 shows the 1H NMR spectra obtained from GO-ButA recorded on a Bruker Ultrashield™ (400 MHz) NMR spectrometer calibrated to residual solvent peaks: proton (DMSO-D$_6$ 2.50 ppm). The appearance of a signal at 0.84 ppm indicates for CH$_3$, while CH$_2$ protons are located at 1.22 ppm indicating the presence of the alkyl chains in the GO-ButA. The broad H signal of the secondary amide (–NH–R) appearing at 3.31 ppm 1 further supports the formation of GO-ButA.
S2 – Thermo Gravimetric Analysis (TGA) Analysis

TGA of GO and GO-ButA were carried out in a Perkin Elmer Simultaneous Thermal Analyzer, STA 6000 in an uncapped alumina crucible operated at a heating rate of 10°C/min in nitrogen atmosphere. Fig. S2 shows that there is a significant weight loss below 100°C for GO (~11.4%) as compared to GO-ButA (~2.3%). This points to the presence of large amount of absorbed water in GO which disappear upon functionalization possibly due to increased hydrophobicity of the surfaces S2,S3. A sharp degradation in the weight of GO is witnessed around 200°C (~ 13.7 %) within the temperature range of 190 - 220°C which may be attributed to the removal of oxygen containing functionalities via pyrolysis S3,S4. A steady
decrease in the weight of GO-ButA is also observed from 200°C onwards which possibly indicate the removal of covalently bonded n-Butylamine. This finding is consistent with information present elsewhere in the literature which points towards a similar loss within 200 – 500°C S4.

Fig. S2: TGA curves of GO and GO-ButA

Reference:

