Supporting Information

Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials

Hao Wang, Jian Xie, Shichao Zhang, Gaoshao Cao, Xinbing Zhao

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, P. R. China.
School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, P. R. China.

E-mail: gscao@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87951451
Fig. S1 (a) XRD patterns and (b) Raman spectra of the amorphous carbon obtained by carbonization of glucose in 600 °C and 1000 °C, held for 4h and Ar flow.

Fig. S2 EIS plots of FG, Si@FG and Si@FG/C-1 after 5 cycles at 200 mAh g⁻¹ conducted on a Princeton Applied Research Versa-STAT3 electrochemistry workstation by applying an ac of 5 mV amplitude in the reqency range from 0.01~100000Hz.

Fig. S3 Cycling stability of the Si@FG/C-1, Si@FG, FG, amorphous carbon and Si, and Si/FG has
the same ratio (Si: graphite = 1: 9, in weight) with Si@FG/C-1.

Fig. S4 The top-view SEM images of the electrodes of Si@FG/C-1 before (a, b) and after (c, d) 5 discharge-charge cycles at 200 mAh g\(^{-1}\).
Fig. S5 The top-view SEM images of the electrodes of Si@FG before (a, b) and after (c, d) 5 discharge-charge cycles at 200 mAh g-1.