Supporting Information for

Binaphthyl-based Molecular Barrier Materials for Phosphoric Acid Poisoning in High-Temperature Proton Exchange Membrane Fuel Cells

Dong-Cheol Jeong,1,# Bohyun Mun,2,# Hyekyung Lee,1 Seung Jun Hwang,3,$ Sung Jong Yoo,3 EunAe Cho,4 Yunmi Lee*,2 and Changsik Song*,1

1Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea. 2Department of Chemistry, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea. 3Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea. 4Department of Materials Science & Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Email: ymlee@kw.ac.kr and songcs@skku.edu

✓ Figure S1. Comparisons of cyclic voltammograms in an N2-purged 0.1 M HClO4 solution with 0.01 M H3PO4 at a scan rate of 50 mV s⁻¹.
✓ Table S1. ECSA and kinetic current densities at 0.8 V vs. RHE
✓ Figure S2. Comparisons of cyclic voltammograms with different dipping times in an N2-purged 0.1 M HClO4 solution with 0.01 M H3PO4 at a scan rate of 100 mV s⁻¹.
✓ Figures S3 and S4. 1H and 13C NMR spectra of compound 2a
✓ Figures S5 and S6. 1H and 13C NMR spectra of compound BNSH
✓ Figure S7 and S8. 1H and 13C NMR spectra of compound 2b
✓ Figure S9 and S10. 1H and 13C NMR spectra of compound C2-BNSH
✓ Figure S11 and S12. 1H and 13C NMR spectra of compound 2c
✓ Figure S13 and S14. 1H and 13C NMR spectra of compound C12-BNSH
✓ Figure S15 and S16. 1H and 13C NMR spectra of compound 2d
✓ Figure S17 and S18. 1H and 13C NMR spectra of compound BN-1-SH
✓ Figure S19 and S20. 1H and 13C NMR spectra of compound NASH
✓ Figure S21 and S22. 1H and 13C NMR spectra of compound BNCN
Figure S1. Comparisons of cyclic voltammograms in an N$_2$-purged 0.1 M HClO$_4$ solution with 0.01 M H$_3$PO$_4$ at a scan rate of 50 mV s$^{-1}$
Table S1. Electrochemically active surface area (ECSA) and kinetic current densities at 0.8 V vs. RHEa

<table>
<thead>
<tr>
<th></th>
<th>specific ECSA (m² g⁻¹Pt)</th>
<th>j (mA cm⁻² at +0.80 V)</th>
<th>j_k (mA cm⁻² at +0.80 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>24.0</td>
<td>5.6</td>
<td>22.1</td>
</tr>
<tr>
<td>Pt_PAb</td>
<td>22.4</td>
<td>4.5</td>
<td>11.0</td>
</tr>
<tr>
<td>Pt_BNSH_PA</td>
<td>23.0</td>
<td>5.5</td>
<td>20.4</td>
</tr>
<tr>
<td>Pt_BNCN_PA</td>
<td>22.8</td>
<td>5.3</td>
<td>17.0</td>
</tr>
<tr>
<td>Pt_BN-1-SH_PA</td>
<td>24.1</td>
<td>5.2</td>
<td>16.4</td>
</tr>
<tr>
<td>Pt_C12-BNSH_PA</td>
<td>21.9</td>
<td>5.0</td>
<td>14.9</td>
</tr>
<tr>
<td>Pt_C2-BNSH_PA</td>
<td>21.1</td>
<td>4.8</td>
<td>12.9</td>
</tr>
<tr>
<td>Pt_NSH_PA</td>
<td>20.1</td>
<td>3.6</td>
<td>6.9</td>
</tr>
</tbody>
</table>

aThe ORR activities were measured in 0.1 M HClO₄ and 0.01 M H₃PO₄ solutions under O₂ using a glassy carbon rotating disk electrode (RDE) at a rotation and sweep rate of 1600 rpm and 10 mV s⁻¹, respectively.

bPA: Phosphoric acid (0.01 M).
Figure S2. Comparisons of cyclic voltammograms with different dipping times in an N\textsubscript{2}-purged 0.1 M HClO\textsubscript{4} solution with 0.01 M H\textsubscript{3}PO\textsubscript{4} at a scan rate of 100 mV s-1.
- 1H NMR and 13C NMR spectra for all products:

Figure S3. 1H NMR spectrum of compound 2a

Figure S4. 13C NMR spectrum of compound 2a
Figure S5. 1H NMR spectrum of compound BNSH

Figure S6. 13C NMR spectrum of compound BNSH
Figure S7. 1H NMR spectrum of compound 2b

Figure S8. 13C NMR spectrum of compound 2b
Figure S9. 1H NMR spectrum of compound C2-BNSH

Figure S10. 13C NMR spectrum of compound C2-BNSH
Figure S11. 1H NMR spectrum of compound 2c

Figure S12. 13C NMR spectrum of compound 2c
Figure S13. 1H NMR spectrum of compound C12-BNSH

Figure S14. 13C NMR spectrum of compound C12-BNSH
Figure S15. 1H NMR spectrum of compound 2d

Figure S16. 13C NMR spectrum of compound 2d
Figure S17. 1H NMR spectrum of compound BN-1-SH

Figure S18. 13C NMR spectrum of compound BN-1-SH
Figure S19. 1H NMR spectrum of compound NASH

Figure S20. 13C NMR spectrum of compound NASH
Figure S21. 1H NMR spectrum of compound BNCN

Figure S22. 13C NMR spectrum of compound BNCN