Supporting Information

From 1D to 3D Lanthanide Coordination Polymers Constructed with Pyridine-3,5-dicarboxylic Acid: Synthesis, Crystal Structures, and Catalytic Properties

Xiao-Ming Lin,*a Ji-Liang Niu,a Pei-Xian Wen,a Yan-Na Lu,a Lei Hu,a Da-Liang Zhangb and Yue-Peng Cai**a

a School of Chemistry and Environment, South China Normal University; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, 510006, P.R. China, E-mail: linxm@scnu.edu.cn; caiyp@scnu.edu.cn

b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China

Contents

1. Table S1 Selected bond lengths and angles for compounds 1-6

2. Fig. S1 Experimental and simulated PXRD patterns for 1 to 7.

3. Fig. S2 TGA curves of compounds 3, 5, 7 and activated

4. Fig. S3 N₂ adsorption/desorption isotherms of 3 (Sm-PDC) and 5 (Ho-PDC).

5. Fig. S4 Filtration experiment for 3 (Sm-PDC). The full square (■) represents the reaction with Sm-PDC as a catalyst. The open square (□) represents the reaction course after filtration of the catalyst at 2 hours.

6. Fig. S5 Recycling experiments.

7. Fig. S6 Powder X-ray patterns for 3 (Sm-PDC) before and after catalytic studies.
Table S1 Selected bond lengths (Å) and bond angles (º) for 1-7.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Bond Lengths</th>
<th>Bond Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>La(1)-O(6)#1</td>
<td>2.426(4)</td>
<td>La(2')-O(2W)</td>
</tr>
<tr>
<td>La(1)-O(4)#2</td>
<td>2.426(4)</td>
<td>O(6)#1-La(1)-O(9)#1</td>
</tr>
<tr>
<td>La(1)-O(9)#1</td>
<td>2.468(4)</td>
<td>O(4)#2-La(1)-O(9)#1</td>
</tr>
<tr>
<td>La(1)-O(13)</td>
<td>2.524(5)</td>
<td>O(6)#1-La(1)-O(13)</td>
</tr>
<tr>
<td>La(1)-O(12)#3</td>
<td>2.543(4)</td>
<td>O(4)#2-La(1)-O(13)</td>
</tr>
<tr>
<td>La(1)-O(1)</td>
<td>2.605(5)</td>
<td>O(9)#1-La(1)-O(13)</td>
</tr>
<tr>
<td>La(1)-O(7)#4</td>
<td>2.653(5)</td>
<td>O(6)#1-La(1)-O(12)#3</td>
</tr>
<tr>
<td>La(1)-O(2)</td>
<td>2.719(4)</td>
<td>O(4)#2-La(1)-O(12)#3</td>
</tr>
<tr>
<td>La(1)-O(8)#4</td>
<td>2.821(4)</td>
<td>O(9)#1-La(1)-O(12)#3</td>
</tr>
<tr>
<td>La(1)-La(2)</td>
<td>4.1536(11)</td>
<td>O(13-La(1)-O(12)#3</td>
</tr>
<tr>
<td>La(2)-O(10)</td>
<td>2.423(4)</td>
<td>O(6)#1-La(1)-O(1)</td>
</tr>
<tr>
<td>La(2)-O(3)#5</td>
<td>2.471(4)</td>
<td>O(4)#2-La(1)-O(1)</td>
</tr>
<tr>
<td>La(2)-O(5)</td>
<td>2.484(4)</td>
<td>O(9)#1-La(1)-O(1)</td>
</tr>
<tr>
<td>La(2)-O(8)#4</td>
<td>2.558(4)</td>
<td>O(13-La(1)-O(1)</td>
</tr>
<tr>
<td>La(2)-O(2W)</td>
<td>2.559(5)</td>
<td>O(6)#1-La(1)-O(7)#4</td>
</tr>
<tr>
<td>La(2)-O(2)</td>
<td>2.560(4)</td>
<td>O(4)#2-La(1)-O(7)#4</td>
</tr>
<tr>
<td>La(2)-O(1W)</td>
<td>2.583(5)</td>
<td>O(9)#1-La(1)-O(7)#4</td>
</tr>
<tr>
<td>La(2)-O(11)#3</td>
<td>2.705(4)</td>
<td>O(13-La(1)-O(7)#4</td>
</tr>
<tr>
<td>La(2)-O(12)#3</td>
<td>2.791(4)</td>
<td>O(12)#3-La(1)-O(7)#4</td>
</tr>
<tr>
<td>La(1')-O(13)</td>
<td>2.231(10)</td>
<td>O(1)-La(1)-O(7)#4</td>
</tr>
<tr>
<td>La(1')-O(7)#4</td>
<td>2.241(10)</td>
<td>O(6)#1-La(1)-O(2)</td>
</tr>
<tr>
<td>La(1')-O(4)#2</td>
<td>2.297(9)</td>
<td>O(4)#2-La(1)-O(2)</td>
</tr>
<tr>
<td>La(1')-O(9)#1</td>
<td>2.393(9)</td>
<td>O(9)#1-La(1)-O(2)</td>
</tr>
<tr>
<td>La(1')-O(8)#4</td>
<td>2.718(9)</td>
<td>O(13-La(1)-O(2)</td>
</tr>
<tr>
<td>La(1')-O(6)#1</td>
<td>2.854(10)</td>
<td>O(12)#3-La(1)-O(2)</td>
</tr>
<tr>
<td>La(1')-O(1)</td>
<td>2.870(9)</td>
<td>O(1)-La(1)-O(2)</td>
</tr>
<tr>
<td>La(1')-O(12)#3</td>
<td>2.873(9)</td>
<td>O(7)#4-La(1)-O(2)</td>
</tr>
<tr>
<td>La(1')-O(2)</td>
<td>3.020(9)</td>
<td>O(6)#1-La(1)-O(8)#4</td>
</tr>
<tr>
<td>La(1')-La(2')</td>
<td>4.176(11)</td>
<td>O(4)#2-La(1)-O(8)#4</td>
</tr>
<tr>
<td>La(2')-O(8)#4</td>
<td>2.145(11)</td>
<td>O(9)#1-La(1)-O(8)#4</td>
</tr>
<tr>
<td>La(2')-O(10)</td>
<td>2.194(10)</td>
<td>O(13-La(1)-O(8)#4</td>
</tr>
<tr>
<td>La(2')-O(3)#5</td>
<td>2.227(10)</td>
<td>O(12)#3-La(1)-O(8)#4</td>
</tr>
<tr>
<td>La(2')-O(2)</td>
<td>2.639(10)</td>
<td>O(1)-La(1)-O(8)#4</td>
</tr>
<tr>
<td>La(2')-O(11)#3</td>
<td>2.695(10)</td>
<td>O(7)#4-La(1)-O(8)#4</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z, #2 -x-1,-y+1,-z+2, #3 -x,y+1,-z+1, #4 x,y-1,z, #5 -x,-y+1,-z+2, #6 x,y+1,z, #7 x+1,y,z.
Compound 2

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(1)-O(7)#1</td>
<td>2.367(3)</td>
<td></td>
</tr>
<tr>
<td>Pr(1)-O(4)#2</td>
<td>2.411(4)</td>
<td></td>
</tr>
<tr>
<td>Pr(1)-O(10)</td>
<td>2.495(3)</td>
<td></td>
</tr>
<tr>
<td>Pr(1)-O(2)</td>
<td>2.514(3)</td>
<td></td>
</tr>
<tr>
<td>Pr(1)-O(1W)</td>
<td>2.514(4)</td>
<td></td>
</tr>
<tr>
<td>Pr(1)-O(2W)</td>
<td>2.558(4)</td>
<td></td>
</tr>
<tr>
<td>Pr(1)-O(6)</td>
<td>2.659(4)</td>
<td></td>
</tr>
<tr>
<td>Pr(1)-O(5)</td>
<td>2.769(4)</td>
<td></td>
</tr>
<tr>
<td>Pr(2)-O(3)#4</td>
<td>2.376(4)</td>
<td></td>
</tr>
<tr>
<td>Pr(2)-O(12)#5</td>
<td>2.403(4)</td>
<td></td>
</tr>
<tr>
<td>Pr(2)-O(8)#6</td>
<td>2.422(3)</td>
<td></td>
</tr>
<tr>
<td>Pr(2)-O(13)</td>
<td>2.470(4)</td>
<td></td>
</tr>
<tr>
<td>Pr(2)-O(5)</td>
<td>2.492(3)</td>
<td></td>
</tr>
<tr>
<td>O(7)#1-Pr(1)-O(4)#2</td>
<td>77.97(13)</td>
<td></td>
</tr>
<tr>
<td>O(7)#1-Pr(1)-O(11)#3</td>
<td>98.58(13)</td>
<td></td>
</tr>
<tr>
<td>O(4)#2-Pr(1)-O(11)#3</td>
<td>73.92(13)</td>
<td></td>
</tr>
<tr>
<td>O(7)#1-Pr(1)-O(10)</td>
<td>84.44(13)</td>
<td></td>
</tr>
<tr>
<td>O(4)#2-Pr(1)-O(10)</td>
<td>72.28(13)</td>
<td></td>
</tr>
<tr>
<td>O(11)#3-Pr(1)-O(10)</td>
<td>144.60(13)</td>
<td></td>
</tr>
<tr>
<td>O(7)#1-Pr(1)-O(2)</td>
<td>150.06(13)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
- #1 -x+1,-y+1,-z
- #2 -x+1,-y+1,-z+1
- #3 x,y+1,z
- #4 -x,-y+1,-z
- #5 x-1,y+1,z
- #6 -x,-y+1,-z
- #7 x,y-1,z
- #8 x+1,y-1,z

Compound 3

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm(1)-O(3)#1</td>
<td>2.334(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-O(5)</td>
<td>2.404(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-O(10)</td>
<td>2.445(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-O(12)#2</td>
<td>2.485(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-O(8)#3</td>
<td>2.507(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-O(2W)</td>
<td>2.509(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-O(1W)</td>
<td>2.543(7)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-O(1)</td>
<td>2.638(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-O(2)</td>
<td>2.752(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(1)-Sm(2)</td>
<td>4.0932(9)</td>
<td></td>
</tr>
<tr>
<td>Sm(2)-O(12)#2</td>
<td>2.815(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(2)-O(11)#2</td>
<td>2.586(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(3)-O(1)-O(5)</td>
<td>78.6(2)</td>
<td></td>
</tr>
<tr>
<td>Sm(2)-O(8)#3</td>
<td>2.680(6)</td>
<td></td>
</tr>
<tr>
<td>Sm(2)-O(12)#2</td>
<td>2.815(6)</td>
<td></td>
</tr>
<tr>
<td>O(6)#4-Sm(2)-Sm(1)</td>
<td>161.55(16)</td>
<td></td>
</tr>
<tr>
<td>O(9)#4-Sm(2)-Sm(1)</td>
<td>104.74(15)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
- #1 -x+1/2,y+3/2,-z
- #2 x,y-1,z
- #3 x,y,z+1/2
- #4 x,y+1,z
- #5 -x+1,-y+1,-z
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
<th>Bond Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb(1)-O(11)</td>
<td>2.339(3)</td>
<td>O(8)-Tb(1)-O(3)#1 83.83(12)</td>
</tr>
<tr>
<td>Tb(1)-O(1W)</td>
<td>2.360(3)</td>
<td>O(11)-Tb(1)-O(2W) 78.22(12)</td>
</tr>
<tr>
<td>Tb(1)-O(2)</td>
<td>2.378(3)</td>
<td>O(1W)-Tb(1)-O(2W) 71.31(13)</td>
</tr>
<tr>
<td>Tb(1)-O(8)</td>
<td>2.380(3)</td>
<td>O(2)-Tb(1)-O(2W) 133.49(12)</td>
</tr>
<tr>
<td>Tb(1)-O(3)#1</td>
<td>2.403(3)</td>
<td>O(8)-Tb(1)-O(2W) 146.77(13)</td>
</tr>
<tr>
<td>Tb(1)-O(2W)</td>
<td>2.409(3)</td>
<td>O(3)#1-Tb(1)-O(2W) 74.87(12)</td>
</tr>
<tr>
<td>Tb(1)-O(6)</td>
<td>2.444(3)</td>
<td>O(11)-Tb(1)-O(6) 91.97(11)</td>
</tr>
<tr>
<td>Tb(1)-O(5)</td>
<td>2.508(3)</td>
<td>O(1W)-Tb(1)-O(6) 96.14(13)</td>
</tr>
<tr>
<td>Tb(1)-O(7)</td>
<td>2.881(3)</td>
<td>O(2)-Tb(1)-O(6) 73.97(12)</td>
</tr>
<tr>
<td>Tb(2)-O(1)</td>
<td>2.353(3)</td>
<td>O(3)#1-Tb(1)-O(6) 145.37(12)</td>
</tr>
<tr>
<td>Tb(2)-O(9)#2</td>
<td>2.501(3)</td>
<td>O(2W)-Tb(1)-O(6) 70.54(12)</td>
</tr>
<tr>
<td>Tb(2)-O(11)</td>
<td>2.770(3)</td>
<td>O(11)-Tb(1)-O(5) 137.16(11)</td>
</tr>
<tr>
<td>O(11)-Tb(1)-O(1W)</td>
<td>143.59(12)</td>
<td>O(1W)-Tb(1)-O(5) 71.86(12)</td>
</tr>
<tr>
<td>O(11)-Tb(1)-O(2)</td>
<td>73.93(12)</td>
<td>O(2)-Tb(1)-O(5) 73.63(11)</td>
</tr>
<tr>
<td>O(1W)-Tb(1)-O(2)</td>
<td>142.34(12)</td>
<td>O(8)-Tb(1)-O(5) 77.07(11)</td>
</tr>
<tr>
<td>O(11)-Tb(1)-O(8)</td>
<td>122.89(11)</td>
<td>O(3)#1-Tb(1)-O(5) 143.45(11)</td>
</tr>
<tr>
<td>O(1W)-Tb(1)-O(8)</td>
<td>78.52(12)</td>
<td>O(2W)-Tb(1)-O(5) 105.55(12)</td>
</tr>
<tr>
<td>O(2)-Tb(1)-O(8)</td>
<td>79.52(12)</td>
<td>O(6)-Tb(1)-O(5) 52.40(10)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1 -x,y+1/2,-z-1/2, #2 x-1,y,z , #3 -x,y-1/2,-z-1/2, #4 x+1,y,z

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
<th>Bond Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho(1)-O(7)</td>
<td>2.301(3)</td>
<td>O(7)-Ho(1)-O(13) 147.25(11)</td>
</tr>
<tr>
<td>Ho(1)-O(4)#1</td>
<td>2.344(3)</td>
<td>O(4)#1-Ho(1)-O(13) 72.67(11)</td>
</tr>
<tr>
<td>Ho(1)-O(1)</td>
<td>2.360(3)</td>
<td>O(1)-Ho(1)-O(13) 138.14(11)</td>
</tr>
<tr>
<td>Ho(1)-O(13)</td>
<td>2.374(3)</td>
<td>O(1W)-Ho(1)-O(13) 74.21(13)</td>
</tr>
<tr>
<td>Ho(1)-O(1W)</td>
<td>2.368(4)</td>
<td>O(7)-Ho(1)-O(12) 134.16(12)</td>
</tr>
<tr>
<td>Ho(1)-O(12)</td>
<td>2.412(3)</td>
<td>O(4)#1-Ho(1)-O(12) 145.50(12)</td>
</tr>
<tr>
<td>Ho(1)-O(10)</td>
<td>2.438(3)</td>
<td>O(1)-Ho(1)-O(12) 75.61(11)</td>
</tr>
<tr>
<td>Ho(1)-O(11)</td>
<td>2.484(3)</td>
<td>O(1W)-Ho(1)-O(12) 99.23(13)</td>
</tr>
<tr>
<td>Ho(1)-O(9)</td>
<td>2.766(3)</td>
<td>O(13)-Ho(1)-O(12) 72.91(12)</td>
</tr>
<tr>
<td>Ho(2)-O(9)</td>
<td>2.327(3)</td>
<td>O(7)-Ho(1)-O(10) 125.17(11)</td>
</tr>
<tr>
<td>Ho(2)-O(3W)</td>
<td>2.347(3)</td>
<td>O(4)#1-Ho(1)-O(10) 89.88(12)</td>
</tr>
<tr>
<td>Ho(2)-O(8)</td>
<td>2.366(3)</td>
<td>O(1)-Ho(1)-O(10) 74.78(12)</td>
</tr>
<tr>
<td>O(7)-Ho(1)-O(4)#1</td>
<td>79.22(12)</td>
<td>O(1W)-Ho(1)-O(10) 145.44(12)</td>
</tr>
<tr>
<td>O(7)-Ho(1)-O(1)</td>
<td>74.04(11)</td>
<td>O(13)-Ho(1)-O(10) 71.92(12)</td>
</tr>
<tr>
<td>O(4)#1-Ho(1)-O(1)</td>
<td>132.02(11)</td>
<td>O(12)-Ho(1)-O(10) 77.27(11)</td>
</tr>
<tr>
<td>O(7)-Ho(1)-O(1W)</td>
<td>82.09(13)</td>
<td>O(7)-Ho(1)-O(11) 84.89(11)</td>
</tr>
<tr>
<td>O(4)#1-Ho(1)-O(1W)</td>
<td>73.57(13)</td>
<td>O(13)-Ho(1)-O(10) 71.92(12)</td>
</tr>
<tr>
<td>O(1)-Ho(1)-O(1W)</td>
<td>138.38(13)</td>
<td>O(12)-Ho(1)-O(10) 77.27(11)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1 -x,y+1/2,-z-1/2, #2 x-1,y,z, #3 -x,y-1/2,-z-1/2, #4 x+1,y,z
Compound 6

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er(1)-O(12)</td>
<td>2.240(11)</td>
<td></td>
</tr>
<tr>
<td>Er(1)-O(5)</td>
<td>2.246(11)</td>
<td>86.5(4)</td>
</tr>
<tr>
<td>Er(1)-O(6)#1</td>
<td>2.281(11)</td>
<td>73.2(4)</td>
</tr>
<tr>
<td>Er(1)-O(11)#2</td>
<td>2.384(13)</td>
<td>138.4(5)</td>
</tr>
<tr>
<td>Er(1)-O(2)</td>
<td>2.392(10)</td>
<td>73.7(5)</td>
</tr>
<tr>
<td>Er(1)-O(1W)</td>
<td>2.401(10)</td>
<td>127.5(3)</td>
</tr>
<tr>
<td>Er(1)-O(2W)</td>
<td>2.452(11)</td>
<td>72.3(4)</td>
</tr>
<tr>
<td>Er(1)-O(1)</td>
<td>2.524(10)</td>
<td>83.7(4)</td>
</tr>
<tr>
<td>Er(1)-O(11)#2</td>
<td>2.524(10)</td>
<td>71.8(5)</td>
</tr>
<tr>
<td>O(12)-Er(1)-O(5)</td>
<td>152.3(2)</td>
<td>139.0(5)</td>
</tr>
<tr>
<td>O(12)-Er(1)-O(6)#1</td>
<td>104.1(4)</td>
<td>146.6(3)</td>
</tr>
<tr>
<td>O(5)-Er(1)-O(6)#1</td>
<td>80.7(5)</td>
<td>73.6(2)</td>
</tr>
<tr>
<td>O(12)-Er(1)-O(11)#2</td>
<td>81.6(4)</td>
<td>76.0(4)</td>
</tr>
<tr>
<td>O(5)-Er(1)-O(11)#2</td>
<td>109.6(4)</td>
<td>131.3(4)</td>
</tr>
<tr>
<td>O(6)#1-Er(1)-O(1)</td>
<td>146.9(3)</td>
<td>78.2(5)</td>
</tr>
<tr>
<td>O(12)-Er(1)-O(2)</td>
<td>127.9(4)</td>
<td>71.5(5)</td>
</tr>
<tr>
<td>O(5)-Er(1)-O(2)</td>
<td>79.9(4)</td>
<td>52.8(2)</td>
</tr>
<tr>
<td>O(6)#1-Er(1)-O(2)</td>
<td>77.0(4)</td>
<td>142.9(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,z-1/2, #2 x,-y+1,z+1/2, #5 -x+2,-y+1,-z.

Compound 7

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu(1)-O(5)#1</td>
<td>2.205(13)</td>
<td>76.0(5)</td>
</tr>
<tr>
<td>Lu(1)-O(9)</td>
<td>2.235(12)</td>
<td>75.0(5)</td>
</tr>
<tr>
<td>Lu(1)-O(6)</td>
<td>2.267(13)</td>
<td>73.4(5)</td>
</tr>
<tr>
<td>Lu(1)-O(10)#1</td>
<td>2.346(14)</td>
<td>86.9(5)</td>
</tr>
<tr>
<td>Lu(1)-O(1)</td>
<td>2.384(13)</td>
<td>136.2(6)</td>
</tr>
<tr>
<td>Lu(1)-O(1W)</td>
<td>2.393(13)</td>
<td>75.0(6)</td>
</tr>
<tr>
<td>Lu(1)-O(2W)</td>
<td>2.432(12)</td>
<td>128.9(4)</td>
</tr>
<tr>
<td>Lu(1)-O(2)</td>
<td>2.483(13)</td>
<td>83.4(5)</td>
</tr>
<tr>
<td>Ag(1)-N(1)</td>
<td>2.149(6)</td>
<td>72.2(5)</td>
</tr>
<tr>
<td>Ag(1)-N(1)#3</td>
<td>2.149(5)</td>
<td>70.1(6)</td>
</tr>
<tr>
<td>O(5)#1-Lu(1)-O(9)</td>
<td>152.3(3)</td>
<td>140.8(6)</td>
</tr>
<tr>
<td>O(5)#1-Lu(1)-O(6)</td>
<td>79.2(5)</td>
<td>144.0(4)</td>
</tr>
<tr>
<td>O(9)-Lu(1)-O(6)</td>
<td>103.8(5)</td>
<td>73.4(3)</td>
</tr>
<tr>
<td>O(5)#1-Lu(1)-O(10)#1</td>
<td>109.0(5)</td>
<td>130.4(5)</td>
</tr>
<tr>
<td>O(9)-Lu(1)-O(10)#1</td>
<td>83.6(5)</td>
<td>76.4(5)</td>
</tr>
<tr>
<td>O(6)-Lu(1)-O(10)#1</td>
<td>147.4(3)</td>
<td>77.7(6)</td>
</tr>
<tr>
<td>O(5)#1-Lu(1)-O(1)</td>
<td>78.8(5)</td>
<td>53.4(2)</td>
</tr>
<tr>
<td>O(9)-Lu(1)-O(1)</td>
<td>129.1(5)</td>
<td>145.5(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,z-1/2, #2 x,-y+1,z+1/2.
Fig. S1 Experimental and simulated PXRD patterns for 1 to 7.
Fig. S2 TGA curves of compounds 3, 5, 7 and activated 3.

Fig. S3 N$_2$ adsorption/desorption isotherms of 3 (Sm-PDC) and 5 (Ho-PDC).
Fig. S4 Filtration experiment for 3 (Sm-PDC). The full square (■) represents the reaction with Sm-PDC as a catalyst. The open square (□) represents the reaction course after filtration of the catalyst at 2 hours.

Fig. S5 Recycling experiments.
Fig. S6 Powder X-ray patterns for 3 (Sm-PDC) before and after catalytic studies.