Supplementary Information

Oxide Planar p-n Heterojunction Prepared by Low Temperature Solution Growth for UV-Photodetector Application

O. Lupan,*a,b S. Koussi-Daoud,a B. Viana,a T. Pauporté*aa

a Institut de Recherche de Chimie Paris, UMR8247, PSL Research University, Chimie ParisTech, CNRS, 11 rue P. et M. Curie, 75231, Paris, cedex 05, France.
b Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, 168 Stefan cel Mare Blvd., MD-2004, Chisinau, Republic of Moldova

E-mails: thierry.pauporte@chimie-paristech.fr; lupanoleg@yahoo.com

Figure S1. SEM top-view images of the NiO deposited layer on ZnO/FTO/glass substrate at different magnifications.
Figure S2. Schematic energy band diagram of p-NiO/n-ZnO heterojunction at equilibrium.

Figure S3. (a) Typical current-voltage characteristics of the p-NiO/n-ZnO heterostructure based device in the dark and under UV illumination ($\lambda = 254$ nm). (b,c) Transient UV ($\lambda = 365$ nm) response at lower intensity at (b) + 1 V and (c) – 1 V applied voltage bias.