SUPPORTING INFORMATION

Synthesis of Blocked Waterborne Polyurethane Polymeric Dyes with Tailored Molecular Weight: Thermal, Rheological and Printing Properties

Haiyan Maoa,b, Youjiang Wangb, Donggang Yaob, Chaoxia Wang*,a, Shiguo Sunc

a Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China

b School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295, USA

c College of Sciences Northwest A&F University, Yangling, Shaanxi 712100, China

*Corresponding author, email: wangchaoxia@sohu.com
As shown in Fig.S1, the absorptions at 3318 cm\(^{-1}\), 1710 cm\(^{-1}\), 1304 cm\(^{-1}\) and 1240 cm\(^{-1}\) are ascribed to the stretching band of N-H, C=O, C-O and N-C in the urethane group (-NH-COO-). The appearance of absorption around 1100 cm\(^{-1}\) is assigned to the stretching vibration of C-O-C in the PEG soft segments (except BWPU-PEG0). Additionally, the weak peak at 1645 cm\(^{-1}\) is associated with the stretching vibration of the C=O group in -N-CO-NH-, and the strong bands near 950 cm\(^{-1}\) and 774 cm\(^{-1}\) due to C-H in-plane and out-plane bending vibrations in anthraquinone ring confirms that the chromophore has been successfully introduced into polyurethane chains. Furthermore, the absence of characteristic stretching vibration at 2270 cm\(^{-1}\) indicates that NCO groups have been effectively blocked by the blocking agent. All the above typical peaks confirm the formation of polymeric dyes based on blocked waterborne polyurethanes.