Electronic Supporting Information:

Direct growth of highly dispersed CoO nanoparticles on mesoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction

Pengxi Li, a,b Ruguang Ma, a Yao Zhou, a Yongfang Chen, a Qian Liu, a Qian Liu,* a Guihua Peng, b and Jiacheng Wang* a

a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China. jiacheng.wang@mail.sic.ac.cn; qianliu@sunm.shcnc.ac.cn

b State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical of Guangxi Normal University, Guilin 541004, Guangxi, P. R. China.
Fig. S1 N$_2$ adsorption-desorption isotherm loop (a) and pore size distribution (b) for MC.

Fig. S2 Tafel plot of CoO/MC nanohybrids and commercial Pt/C corresponding LSV curves measured in O$_2$-saturated 0.1M KOH at a rotating speed of 1600 rpm.