Electronic Supplementary Information (ESI):

Thaixylomolins O–R: Four New limonoids from the Trang mangrove,

Xylocarpus moluccensis

Yi-Guo Dai, a† Wan-Shan Li, a† Patchara Pedpradab, b Jun-Jun Liu, c Jun Wu a and Li Shen a

[a] Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P. R. China. E-mail: shenli6052@sina.com (L.S.)

[b] Department of Marine Sciences, Faculty of Sciences and Fishery Technology, Rajamangala University of Technology Srivijaya, Trang Campus, Sikao District, Trang Province 92150, Thailand.

[c] School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.

†These authors contributed equally to this work.

Figures S1–S3, 1D and 2D NMR spectra for Thaixylomolins O–R (1–4).
Table of Contents:

Figure S1. Diagnostic NOE interactions for Thaixylomolin P (2) .. (S5)

Figure S2. ECD spectra of Thaixylomolins O (1) and P (2) measured in MeCN (S6)

Figure S3. Comparison of the experimental ECD spectrum of Thaixylomolin R (4) in MeCN with that calculated for 1R,5R,9S,10R,13R,15R,17R–4 ... (S7)

HR-ESIMS of Thaixylomolin O (1) .. (S8)

1H NMR (400 MHz) spectrum of Thaixylomolin O (1) in CDCl3 ... (S10)

13C NMR (400 MHz) spectrum of Thaixylomolin O (1) in CDCl3 ... (S13)

DEPT135 (400 MHz) spectrum of Thaixylomolin O (1) in CDCl3 ... (S14)

1H-1H COSY (400 MHz) spectrum of Thaixylomolin O (1) in CDCl3 .. (S18)

HSQC (400 MHz) spectrum of Thaixylomolin O (1) in CDCl3 ... (S21)

HMBC (400 MHz) spectrum of Thaixylomolin O (1) in CDCl3 ... (S25)

NOESY (400 MHz) spectrum of Thaixylomolin O (1) in CDCl3 .. (S32)

HR-ESIMS of Thaixylomolin P (2) .. (S35)
1H NMR (400 MHz) spectrum of Thaixylomolin P (2) in CDCl$_3$·

13C NMR (400 MHz) spectrum of Thaixylomolin P (2) in CDCl$_3$·

DEPT135 (400 MHz) spectrum of Thaixylomolin P (2) in CDCl$_3$·

1H-1H COSY (400 MHz) spectrum of Thaixylomolin P (2) in CDCl$_3$·

HSQC (400 MHz) spectrum of Thaixylomolin P (2) in CDCl$_3$·

HMBC (400 MHz) spectrum of Thaixylomolin P (2) in CDCl$_3$·

NOESY (400 MHz) spectrum of Thaixylomolin P (2) in CDCl$_3$·

HR-ESIMS of Thaixylomolin Q (3)·

1H NMR (400 MHz) spectrum of Thaixylomolin Q (3) in CDCl$_3$·

13C NMR (400 MHz) spectrum of Thaixylomolin Q (3) in CDCl$_3$·

DEPT135 (400 MHz) spectrum of Thaixylomolin Q (3) in CDCl$_3$·

1H-1H COSY (400 MHz) spectrum of Thaixylomolin Q (3) in CDCl$_3$·

HSQC (400 MHz) spectrum of Thaixylomolin Q (3) in CDCl$_3$·

HMBC (400 MHz) spectrum of Thaixylomolin Q (3) in CDCl$_3$·
NOESY (400 MHz) spectrum of Thaixylomolin Q (3) in CDCl₃ ...(S83)
HR-ESIMS of Thaixylomolin R (4) ..(S87)
¹H NMR (400 MHz) spectrum of Thaixylomolin R (4) in CDCl₃ ..(S89)
¹³C NMR (400 MHz) spectrum of Thaixylomolin R (4) in CDCl₃ ...(S92)
DEPT135 (400 MHz) spectrum of Thaixylomolin R (4) in CDCl₃ ...(S93)
¹H-¹H COSY (400 MHz) spectrum of Thaixylomolin R (4) in CDCl₃ ...(S95)
HSQC (400 MHz) spectrum of Thaixylomolin R (4) in CDCl₃ ..(S97)
HMBC (400 MHz) spectrum of Thaixylomolin R (4) in CDCl₃ ...(S100)
NOESY (400 MHz) spectrum of Thaixylomolin R (4) in CDCl₃ ..(S108)
Figure S1. Diagnostic NOE interactions for thaixylomolin P (2).
Figure S2. ECD spectra of thaixylomolins O (1) and P (2) measured in MeCN at the concentration of 250 μg/mL.
Figure S3. Comparison of the experimental ECD spectrum of thaixylomolin R (4) in MeCN with that calculated for 1R,5R,9S,10R,13R,15R,17R–4.
HR-ESIMS for compound 1
\(^1\)H NMR (400 MHz) spectrum of compound 1 in CDCl\(_3\)
1H NMR (400 MHz) spectrum of compound 1 in CDCl$_3$
1H NMR (400 MHz) spectrum of compound 1 in CDCl$_3$
13C NMR (100 MHz) spectrum of compound 1 in CDCl$_3$
DEPT135 (100 MHz) spectrum of compound 1 in CDCl$_3$
DEPT135 (100 MHz) spectrum of compound 1 in CDCl₃
DEPT135 (100 MHz) spectrum of compound 1 in CDCl₃
DEPT135 (100 MHz) spectrum of compound 1 in CDCl₃

<table>
<thead>
<tr>
<th>ppm</th>
<th>14.32</th>
<th>14.65</th>
<th>17.93</th>
<th>20.17</th>
<th>20.99</th>
<th>21.32</th>
<th>33.25</th>
<th>37.88</th>
<th>41.35</th>
<th>44.34</th>
<th>47.08</th>
</tr>
</thead>
</table>

![DEPT135 spectrum of compound 1 in CDCl₃]
1H-1H COSY (400 MHz) spectrum of compound 1 in CDCl$_3$
1H-1H COSY (400 MHz) spectrum of compound 1 in CDCl$_3$
1H-1H COSY (400 MHz) spectrum of compound 1 in CDCl$_3$
HSQC (400 MHz) spectrum of compound 1 in CDCl$_3$
HSQC (400 MHz) spectrum of compound 1 in CDCl₃
HSQC (400 MHz) spectrum of compound 1 in CDCl₃
HSQC (400 MHz) spectrum of compound 1 in CDCl₃
HMBC (400 MHz) spectrum of compound 1 in CDCl₃
HMBC (400 MHz) spectrum of compound 1 in CDCl₃
HMBC (400 MHz) spectrum of compound 1 in CDCl₃
HMBC (400 MHz) spectrum of compound 1 in CDCl$_3$
HMBC (400 MHz) spectrum of compound 1 in CDCl₃
HMBC (400 MHz) spectrum of compound 1 in CDCl₃
HMBC (400 MHz) spectrum of compound 1 in CDCl₃
NOESY (400 MHz) spectrum of compound 1 in CDCl₃
NOESY (400 MHz) spectrum of compound 1 in CDCl₃
NOESY (400 MHz) spectrum of compound 1 in CDCl₃
Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name: D:\Data\MS\data\201609\liwanshan_dgy-3_pos_1_01_1849.d
Method: LC_Direct infusion_pos_100-1000m/z.m
Sample Name: liwanshan_dgy-3_pos
Comment:

Acquisition Info
Acquisition Date: 5/19/2016 8:20:45 AM
Operator: SCSIO
Instrument / Ser# m/zXis: 29

Acquisition Parameter
Source Type: ESI
Focus: Active
Scan Begin: 100 m/z
Scan End: 2000 m/z

Intensity x10^5
0.0 0.2 0.4 0.6 0.8 1.0 1.2
655 660 665 670 675 680 685 690

M/z 659.2343 681.2165 1339.4448
Score 100.00 100.00 10.95

<table>
<thead>
<tr>
<th>Measured m/z</th>
<th>Formula</th>
<th>Score</th>
<th>err [ppm]</th>
<th>err [mDa]</th>
<th>msSigma</th>
<th>rdb</th>
<th>e^-</th>
<th>Conf</th>
<th>N-Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>659.2343</td>
<td>C33 H39 O14</td>
<td>100.00</td>
<td>-1.3</td>
<td>-0.9</td>
<td>24.6</td>
<td>14.5</td>
<td>even</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>681.2165</td>
<td>C33 H38 Na O14</td>
<td>100.00</td>
<td>-1.6</td>
<td>-1.1</td>
<td>8.6</td>
<td>14.5</td>
<td>even</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>1339.4448</td>
<td>C86 H78 Na O28</td>
<td>10.95</td>
<td>-2.4</td>
<td>-3.2</td>
<td>38.2</td>
<td>28.5</td>
<td>even</td>
<td>ok</td>
<td></td>
</tr>
</tbody>
</table>

Bruker Compass DataAnalysis 4.0
printed: 5/19/2016 10:56:43 AM
1H NMR (400 MHz) spectrum of compound 2 in CDCl$_3$
1H NMR (400 MHz) spectrum of compound 2 in CDCl$_3$
1H NMR (400 MHz) spectrum of compound 2 in CDCl$_3$
13C NMR (100 MHz) spectrum of compound 2 in CDCl$_3$
DEPT135 (100 MHz) spectrum of compound 2 in CDCl₃
DEPT135 (100 MHz) spectrum of compound 2 in CDCl₃
DEPT135 (100 MHz) spectrum of compound 2 in CDCl₃
1H-1H COSY (400 MHz) spectrum of compound 2 in CDCl$_3$
1H-1H COSY (400 MHz) spectrum of compound 2 in CDCl$_3$
HSQC (400 MHz) spectrum of compound 2 in CDCl₃
HSQC (400 MHz) spectrum of compound 2 in CDCl₃
HSQC (400 MHz) spectrum of compound 2 in CDCl₃
HMBC (400 MHz) spectrum of compound 2 in CDCl₃
HMBC (400 MHz) spectrum of compound 2 in CDCl₃
HMBC (400 MHz) spectrum of compound 2 in CDCl₃
HMBC (400 MHz) spectrum of compound 2 in CDCl₃
HMBC (400 MHz) spectrum of compound 2 in CDCl$_3$
HMBC (400 MHz) spectrum of compound 2 in CDCl$_3$
NOESY (400 MHz) spectrum of compound 2 in CDCl₃
NOESY (400 MHz) spectrum of compound 2 in CDCl₃
NOESY (400 MHz) spectrum of compound 2 in CDCl₃
Mass Spectrum SmartFormula Report

Analysis Info
- Analysis Name: D:\Data\MS\data\201605\liwanshan_dgy-8_pos_3_01_1851.d
- Method: LC_Direct Infusion_pos_100-1000mz.m
- Sample Name: liwanshan_dgy-8_pos
- Comment:

Acquisition Parameter
- Source Type: ESI
- Ion Polarity: Positive
- Focus: Active
- Scan Begin: 100 m/z
- Scan End: 2000 m/z

Measured m/z & Formula

<table>
<thead>
<tr>
<th>Meas. m/z</th>
<th>#</th>
<th>Formula</th>
<th>Score</th>
<th>m/z</th>
<th>err [ppm]</th>
<th>err [mDa]</th>
<th>mSigma</th>
<th>rdb</th>
<th>e⁻ Conf</th>
<th>N-Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>543.2230</td>
<td>1</td>
<td>C 29 H 35 O 10</td>
<td>100.00</td>
<td>543.2225</td>
<td>-1.0</td>
<td>-0.6</td>
<td>3.9</td>
<td>12.5</td>
<td>even</td>
<td>ok</td>
</tr>
<tr>
<td>565.2044</td>
<td>1</td>
<td>C 29 H 34 Na O 10</td>
<td>100.00</td>
<td>565.2044</td>
<td>-0.6</td>
<td>-0.4</td>
<td>28.8</td>
<td>12.5</td>
<td>even</td>
<td>ok</td>
</tr>
<tr>
<td>1107.4215</td>
<td>1</td>
<td>C 58 H 68 Na O 20</td>
<td>55.57</td>
<td>1107.4196</td>
<td>-1.7</td>
<td>-1.9</td>
<td>26.9</td>
<td>24.5</td>
<td>even</td>
<td>ok</td>
</tr>
</tbody>
</table>
1H NMR (400 MHz) spectrum of compound 3 in CDCl$_3$
1H NMR (400 MHz) spectrum of compound 3 in CDCl$_3$
1H NMR (400 MHz) spectrum of compound 3 in CDCl$_3$
13C NMR (100 MHz) spectrum of compound 3 in CDCl$_3$
DEPT135 (100 MHz) spectrum of compound 3 in CDCl₃
DEPT135 (100 MHz) spectrum of compound 3 in CDCl₃
DEPT135 (100 MHz) spectrum of compound 3 in CDCl₃
DEPT135 (100 MHz) spectrum of compound 3 in CDCl₃

ppm

-84.78 -80.52 -77.35 76.71 66.93 52.96 51.09 47.28 40.55 41.31 37.86 29.33 28.23 23.06 22.67 20.14 16.14 11.72
1H-1H COSY (400 MHz) spectrum of compound 3 in CDCl$_3$
'H-'H COSY (400 MHz) spectrum of compound 3 in CDCl₃

Parameters:
- **NAME**: dyg-8-COSY
- **EXPNO**: 104
- **PROCNO**: 1
- **Data Time**: 20160528
- **Time**: 8.30
- **INSTRUMENT**: spect
- **PROBHD**: 5 mm CPPBBO BB
- **PULPROG**: cosygpppqf
- **TD**: 2048
- **SOLVENT**: CDCl₃
- **NS**: 32
- **DS**: 8
- **SNH**: 3906.250 Hz
- **FIDRES**: 1.907349 Hz
- **AQ**: 0.2621940 sec
- **RG**: 117.3
- **DM**: 128.000 usec
- **DE**: 10.00 usec
- **TE**: 297.0 K
- **D0**: 0.00000300 sec
- **D1**: 1.88678097 sec
- **D11**: 0.03000000 sec
- **D12**: 0.00002000 sec
- **D13**: 0.00004000 sec
- **D16**: 0.00025600 sec

CHANNEL f1
- **SF01**: 400.1318008 MHz
- **MC1**: 1H
- **P0**: 11.50 usec
- **F1**: 11.50 usec
- **P17**: 2500.00 usec
- **NS**: 1
- **TD**: 128
- **SF01**: 400.1318 MHz
- **FIDRES**: 30.517578 Hz
- **SW**: 9.762 ppm
- **FMODE**: QF
- **PF**: 1.024
- **SF**: 400.1300098 MHz
- **WDM**: Q9INE
- **SSH**: 0
- **LB**: 0.00 Hz
- **NB**: 0
- **PC**: 1.40
- **SI**: 1024
- **MC2**: QF
- **SF**: 400.1300098 MHz
- **WDM**: Q9INE
- **SSH**: 0
- **LB**: 0.00 Hz
- **NB**: 0
1H-1H COSY (400 MHz) spectrum of compound 3 in CDCl$_3$
1H-1H COSY (400 MHz) spectrum of compound 3 in CDCl$_3$
HSQC (400 MHz) spectrum of compound 3 in CDCl₃
HSQC (400 MHz) spectrum of compound 3 in CDCl₃
HSQC (400 MHz) spectrum of compound 3 in CDCl₃
HSQC (400 MHz) spectrum of compound 3 in CDCl₃
HSQC (400 MHz) spectrum of compound 3 in CDCl₃

<table>
<thead>
<tr>
<th>ppm</th>
<th>140.0</th>
<th>140.5</th>
<th>141.0</th>
<th>141.5</th>
<th>142.0</th>
<th>142.5</th>
<th>143.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>6.4</td>
<td>6.5</td>
<td>6.6</td>
<td>6.7</td>
<td>6.8</td>
<td>6.9</td>
<td>7.0</td>
</tr>
<tr>
<td>7.1</td>
<td>7.2</td>
<td>7.3</td>
<td>7.4</td>
<td>7.5</td>
<td>7.6</td>
<td>7.7</td>
<td>7.8</td>
</tr>
<tr>
<td>7.9</td>
<td>8.0</td>
<td>8.1</td>
<td>8.2</td>
<td>8.3</td>
<td>8.4</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>8.7</td>
<td>8.8</td>
<td>8.9</td>
<td>9.0</td>
<td>9.1</td>
<td>9.2</td>
<td>9.3</td>
<td>9.4</td>
</tr>
</tbody>
</table>

NAME dyg-8
EXPNO 5
PROCNO 1
Date 20151028
Time 12.35
INSTRUM spect
PROBHD 5 mm CPFFBO BB
FULFPG hsqctypep12
TD 1024
SOLVENT CDCl₃
NS 16
DS 16
SN 4302.926 Hz
FIDRES 4.202076 Hz
AQ 0.1190388 sec
RG 208.5
DE 10.000 sec
TE 297.0 K
CONST2 145.0000000
ND0 2
TD 256
SF01 400.1320007 MHz
NUC1 1H
P1 12.00 usec
P2 24.00 usec
P28 0.00 usec
ND0 2
TD 256
SF01 100.6233 MHz
SF 400.1300079 MHz
WDW QSINE
SSB 2
LB 0.00 Hz
GB 0
PC 1.40
SI 1024
MC2 echo-antiecho
SF 100.6127585 MHz
WDW QSINE
SSB 2
LB 0.00 Hz
GB 0
HMBC (400 MHz) spectrum of compound 3 in CDCl₃
HMBC (400 MHz) spectrum of compound 3 in CDCl₃
HMBC (400 MHz) spectrum of compound 3 in CDCl₃
HMBC (400 MHz) spectrum of compound 3 in CDCl₃

NAME dyg-8
EXPNO 6
PROCNO 1
Date 20151028
Time 14.27
INSTRUM spect
PROBHD 5 mm CPFBBO BB
PULPRACT hmbcg1p1pndgt
TD 4096
SOLVENT CDCl₃
NS 32
DS 16
SWH 5197.505 Hz
FIDRES 1.268922 Hz
AQ 0.3940852 sec
RG 208.5
DM 96.200 usec
DE 10.00 usec
TE 297.0 K
CNST2 145.0000000
CNST13 10.0000000
D0 0.00000300 sec
D1 1.50000000 sec
D2 0.00344828 sec
D6 0.00020000 sec
D16 0.00002080 sec

======== CHANNEL f1 ========
SFO1 400.1323208 MHz
NUC1 1H
P1 12.00 usec
P2 24.00 usec
TD 128
SF01 100.6233 MHz
FIDRES 187.800476 Hz
SM 238.896 ppm
FnMODE QF
SI 2048
SF 400.1300078 MHz
WGM SINE
SBB 0
LB 0.00 Hz
GB 1.40
SI 1024
MCFT QF
SF 100.6127685 MHz
WGM SINE
SBB 0
LB 0.00 Hz
GB 0
HMBC (400 MHz) spectrum of compound 3 in CDCl₃
HMBC (400 MHz) spectrum of compound 3 in CDCl₃
NOESY (400 MHz) spectrum of compound 3 in CDCl₃
NOESY (400 MHz) spectrum of compound 3 in CDCl₃
NOESY (400 MHz) spectrum of compound 3 in CDCl₃
NOESY (400 MHz) spectrum of compound 3 in CDCl₃
Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name: D:\Data\MSSdata201603\iwanshan_dgy-21_pos_01_1856.d
Method: LC_Direct Infusion_pos_100-1000mz.m
Sample Name: iwanshan_dgy-21_pos
Comment:

Acquisition Date: 5/19/2016 8:44:40 AM
Operator: SCSIO
Instrument / Ser#: maxXis

Source Type: ESI
Focus: Active
Scan Begin: 100 m/z
Scan End: 2000 m/z

Ion Polarity: Positive
Set Capillary: 4500 V
Set End Plate Offset: -500 V
Set Collision Cell RF: 800.0 Vpp
Set Divert Valve: Waste
Set Nebulizer: 0.4 Bar
Set Dry Heater: 180 °C
Set Dry Gas: 4.0 l/min

+MS, 0.4min #25

Meas. m/z # Formula Score m/z err [ppm] err [mDa] mSigma rdb e Conff N-Rule
429.2271 1 C 25 H 33 O 6 100.00 429.2272 0.3 0.1 36.6 9.5 even ok
451.2091 1 C 25 H 32 Na O 6 100.00 451.2091 1.0 0.4 28.6 9.5 even ok
879.4295 1 C 50 H 64 Na O 12 100.00 879.4290 -0.6 -0.5 17.5 16.5 even ok

Bruker Compass DataAnalysis 4.0 printed: 5/19/2016 11:26:25 AM Page 1 of 1
1H NMR (400 MHz) spectrum of compound 4 in CDCl$_3$
1H NMR (400 MHz) spectrum of compound 4 in CDCl$_3$
1H NMR (400 MHz) spectrum of compound 4 in CDCl$_3$
13C NMR (100 MHz) spectrum of compound 4 in CDCl$_3$
DEPT135 (100 MHz) spectrum of compound 4 in CDCl₃
DEPT135 (100 MHz) spectrum of compound 4 in CDCl₃
1H-1H COSY (400 MHz) spectrum of compound 4 in CDCl$_3$
1H-1H COSY (400 MHz) spectrum of compound 4 in CDCl$_3$
HSQC (400 MHz) spectrum of compound 4 in CDCl₃
HSQC (400 MHz) spectrum of compound 4 in CDCl₃
HSQC (400 MHz) spectrum of compound 4 in CDCl₃
HMBC (400 MHz) spectrum of compound 4 in CDCl₃
HMBC (400 MHz) spectrum of compound 4 in CDCl₃
HMBC (400 MHz) spectrum of compound 4 in CDCl₃
HMBC (400 MHz) spectrum of compound 4 in CDCl$_3$
HMBC (400 MHz) spectrum of compound 4 in CDCl₃
HMBC (400 MHz) spectrum of compound 4 in CDCl$_3$
HMBC (400 MHz) spectrum of compound 4 in CDCl₃
HMBC (400 MHz) spectrum of compound 4 in CDCl₃
NOESY (400 MHz) spectrum of compound 4 in CDCl₃
NOESY (400 MHz) spectrum of compound 4 in CDCl₃
NOESY (400 MHz) spectrum of compound 4 in CDCl₃
NOESY (400 MHz) spectrum of compound 4 in CDCl₃

NAME dyg-21
EXPNO 7
PROCNO 1
Date 20151130
Time 8.06
INSTRUM spect
PULPROG noesygpphpp
TD 2048
SOLVENT CDCl₃
NS 32
DS 32
SNH 4000.000 Hz
FIDRES 1.953125 Hz
AQ 0.2560500 sec
RG 208.5
DM 125.000 usec
DE 10.000 usec
TE 297.0 K
D0 0.00010972 sec
D1 1.99385595 sec
D8 0.30000001 sec
D11 0.00000000 sec
D12 0.00002000 sec
D16 0.00020000 sec
INO 0.00025000 sec

== CHANNEL f1 ==
SFO1 400.1318006 MHz
NUC1 1H
P1 12.000 usec
P2 24.000 usec
P17 2500.0000 usec
ND0 1
TD 256
FIDRES 15.625000 Hz
SNH 9.997 Ppm
FmMODE States-TPPI
SI 1024
SF 400.1300098 MHz
WDM QSINE
SSB 2
LB 0.00 Hz
GB 0
PC 1.00
SI 1024
MCC2 States-TPPI
SF 400.1300098 MHz
WDM QSINE
SSB 2
LB 0.00 Hz
GB 0