Supporting Information

A FRET-based fluorescent approach for labetalol sensing using calix[6]arene functionalized MnO$_2$@graphene as receptor

Hanzhang Yea, 1, Long Yanga, 1, Genfu Zhaoa, Yanqiong Zhanga, Xin Rana, Shilian Wua, Suo Zoua, Xiaoguang Xiea, *, Hui Zhaob, *, Can-Peng Lia, *

a School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.

b Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, PR China.

1These authors contributed equally to this work.

* Corresponding authors.

Fax or Tel: 86-871-65031119. E-mail: xgxie@ynu.edu.cn (X. Xie); zhaohui@ynu.edu.cn (H. Zhao); lcппp1974@sina.com (C.-P. Li).
Fig. S1 The chemical structure of SCX6.

Fig. S2 The chemical structure of labetalol.
Fig. S3 The photograph of SCX6–MnO$_2$@RGO aqueous dispersion (1.0 mg mL$^{-1}$) after being stored for 6 months.

Fig. S4 Job’s continuous variation plot of the SCX6/labetalol complex.
Fig. S5 Fluorescence spectra of 10 µM R6G in the absence and presence of 1 µg mL\(^{-1}\) MnO\(_2\), RGO, MnO\(_2\)@RGO, and SCX6–MnO\(_2\)@RGO.

Fig. S6 (A) The effect of increasing concentrations of MnO\(_2\)@RGO (concentrations ranging from 0 to 6 µg mL\(^{-1}\)) on the fluorescence intensity of R6G (\(\lambda_{ex} = 490\) nm). R6G concentration was 10 µM. (B) Fluorescence spectra of the MnO\(_2\)@RGO•R6G complex via different concentrations of labetalol. R6G and MnO\(_2\)@RGO concentrations were 10 µM and 6 µg mL\(^{-1}\), respectively. The combined solution was mixed by vortexing well for 5 min and then tested.