Supplementary Material

Halogen bonding in drug-like molecules: A computational and systematic study of the substituent effect

Francisco Adasme-Carreño[†], Camila Muñoz-Gutierrez, Jans H. Alzate-Morales[†]

Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca, Chile.

[†]E-mail: fadasmec@utalca.cl, jalzate@utalca.cl

Figure S1 Representation of the starting geometry in iodobenzene…NMA complex (top view). Dihedral harmonic constraints are indicated as θ_1 (C₁–C₂–O₁…I₁) and θ_2 (C₂–O₁…I₁–C₃)

Figure S2 Hammett's plots of *para*- (left) and *meta*-substituted (right) halobenzene...NMA complexes. Data is color-coded by halogen: chlorine (green), bromine (dark red) and iodine (violet).

Figure S3 Regression plots of the electron density at the X···O bond CP *versus* the interaction energies per substitution position (top) and per halogen atom (bottom). Data points are coded by halogen: chlorine (green), bromine (dark red) and iodine (violet), and by substitution position: *para* (circle, \bullet), *meta* (square, \blacksquare) and *ortho* (triangle, \blacktriangle).

Table S1 Substituent frequency on the halobenzene moiety in the ZINC database.^{*a*} Relative frequencies are given with respect to the total number of substituents found at the corresponding position.

R'	ortho	%	meta	%	para	%
Br	23,589	1.7	91,168	5.2	30,680	4.0
CF ₃	17,836	1.3	9,446	0.5	12,333	1.6
CH ₃	55,148	4.0	33,845	1.9	11,960	1.6
Cl	291,549	20.9	454,634	25.9	106,243	14.0
CN	19,926	1.4	15,772	0.9	13,560	1.8
F	529,077	38.0	781,660	44.5	218,345	28.7
Ι	2,283	0.2	4,703	0.3	1,785	0.2
$N(CH_3)_2$	4,171	0.3	1,116	0.1	1,681	0.2
NH ₂	18,573	1.3	26,044	1.5	18,565	2.4
NHCOCH ₃	8,706	0.6	3,265	0.2	8,208	1.1
NO_2	34,516	2.5	47,072	2.7	31,182	4.1
$O(CH_3)_2$	20,200	1.5	12,067	0.7	10,145	1.3
OCH ₃	130,154	9.3	79,354	4.5	112,158	14.7
OH	32,131	2.3	18,315	1.0	35,270	4.6
4-fluorophenyl	8	0.0	349	0.0	8,852	1.2
Accum	1,187,867	85.3	1,578,810	89.9	620,967	81.6
Totals	1,393,028	35.6 ^b	1,755,410	44.9 ^b	760,682	19.5 ^b

^{*a*} Note that only chemical groups with less than 8 heavy atoms and with at least 1% of occurrence in one or more of the three substitution positions are included, except I and $N(CH_3)_2$.

^b Percentage relative to the total amount of found substituents (i.e., 3,909,120).

R'	$E_{\rm int}$	$\Delta E_{\rm int}$	R_e	α_{donor}	aacc	$10^2 imes ho$	$10^{-1} \times V_{S,\max}$	$10^2 \times CT$
Н	-1.19 (-0.92)		3.02	177.9	112.9	-1.01	0.55	0.38
pBr	-1.54 (-1.31)	-0.35	3.02	179.6	114.2	-1.00	0.92	0.42
pCF_3	-1.80 (-1.22)	-0.61	2.99	177.3	113.8	-1.06	1.21	0.43
pCH_3	-1.07 (-0.82)	+0.12	3.04	178.5	112.8	-0.96	0.42	0.35
pCl	-1.52 (-1.28)	-0.33	2.99	178.4	114.1	-1.06	0.92	0.44
<i>p</i> CN	-2.06 (-1.75)	-0.87	2.95	179.3	116.8	-1.15	1.47	0.54
pF	-1.41 (-1.15)	-0.22	3.01	179.3	113.7	-1.02	0.82	0.40
pI	-1.54 (-1.23)	-0.35	2.99	178.6	114.1	-1.05	0.92	0.44
$pN(CH_3)_2$	-0.69 (-0.32)	+0.50	3.10	172.7	110.2	-0.86	0.00	0.21
pNH_2	-0.77 (-0.49)	+0.42	3.07	178.8	111.6	-0.90	0.08	0.28
<i>p</i> NHCOCH ₃	-1.26 (-0.86)	-0.07	3.02	178.9	113.1	-1.01	0.48	0.37
pNO_2	-2.19 (-1.86)	-1.00	2.94	179.6	117.3	-1.17	1.59	0.54
pOCH ₃	-0.97 (-0.71)	+0.22	3.07	172.6	110.8	-0.91	0.39	0.26
$pO(CH3)_2$	-0.89 (-0.66)	+0.30	3.01	177.4	116.8	-1.00	0.34	0.37
pOH	-1.05 (-0.83)	+0.14	3.03	178.8	113.6	-0.98	0.48	0.37
mBr	-1.36 (-0.94)	-0.17	2.97	177.3	126.3	-1.06	0.93	0.47
mCF ₃	-1.52 (-1.21)	-0.33	2.94	177.4	127.8	-1.12	1.14	0.49
mCH ₃	-1.04 (-0.77)	+0.15	3.00	178.6	117.0	-1.03	0.44	0.41
mCl	-1.48 (-1.20)	-0.29	2.96	178.3	119.0	-1.12	0.96	0.50
mCN	-1.88 (-1.66)	-0.69	2.94	178.8	120.4	-1.16	1.39	0.56
mF	-1.44 (-1.24)	-0.25	2.96	178.1	120.0	-1.11	0.92	0.49
mI	-1.45 (-0.97)	-0.26	2.96	177.9	120.0	-1.12	0.92	0.50
$mN(CH_3)_2$	-0.98 (-0.63)	+0.21	3.04	178.6	112.8	-0.97	0.21	0.33
mNH ₂	-1.01 (-0.71)	+0.18	3.03	179.4	114.0	-0.99	0.25	0.36
<i>m</i> NHCOCH ₃	-1.45 (-1.17)	-0.26	3.00	179.1	113.9	-1.04	0.71	0.42
mNO ₂	-1.92 (-1.62)	-0.73	2.92	179.0	120.7	-1.20	1.46	0.58
mOCH ₃	-1.09 (-0.82)	+0.10	3.03	179.5	113.0	-0.99	0.43	0.37
<i>m</i> O(CH3) ₂	-0.94 (-0.65)	+0.25	2.98	177.0	118.5	-1.06	0.40	0.43
mOH	-1.11 (-0.88)	+0.08	2.99	178.1	117.1	-1.06	0.55	0.43
oBr	-1.03 (-0.79)	+0.16	2.92	176.1	128.7	-1.16	0.83	0.52
oCF ₃	-1.06 (-0.69)	+0.13	2.93	177.4	138.1	-1.10	1.00	0.44
oCH ₃	-1.17 (-0.81)	+0.02	3.00	177.6	115.8	-1.04	0.49	0.42
oCl	-1.24 (-0.94)	-0.05	2.94	179.1	119.6	-1.16	0.84	0.53
oCN	-1.41 (-1.11)	-0.22	2.90	178.0	126.8	-1.22	1.19	0.60
oF	-1.24 (-0.93)	-0.05	2.94	179.2	120.5	-1.16	0.85	0.52
οI	-1.24 (-0.76)	-0.05	2.94	179.6	119.6	-1.16	0.83	0.53
$oN(CH_3)_2$	-1.07 (-0.67)	+0.12	3.02	175.2	114.9	-1.00	0.37	0.39
oNH ₂	-1.56 (-1.31)	-0.37	3.01	174.9	113.8	-1.03	0.63	0.41
oNHCOCH₃	-2.35 (-2.05)	-1.16	2.97	173.9	114.5	-1.12	1.33	0.49
oNO ₂	-1.46 (-1.15)	-0.27	2.89	176.9	131.4	-1.23	1.28	0.60

Table S2 Energetic values, geometric features and molecular properties of un- and substituted chlorobenzene^{...}NMA complexes^{*a*}

oOCH ₃	-0.83 (-0.54)	+0.36	3.01	176.5	113.7	-1.01	0.25	0.37
oO(CH3) ₂	-0.74 (-0.42)	+0.45	2.98	179.7	116.6	-1.06	0.23	0.41
oОН	-2.00 (-1.71)	-0.81	2.94	172.0	122.2	-1.15	1.21	0.52

^{*a*} Interaction energies (E_{int}) and energy differences with respect to the unsubstituted complex (ΔE_{int}) are in kcal mol⁻¹. Interaction energies were also calculated at the M06-2X/aug-pVTZ-PP level of theory (in parenthesis). Geometries features are equilibrium distances (R_e , Å), and donor (O···I–C, α_{donor}) and acceptor (C–O···I, α_{acc}) angles. Molecular properties are the electron density at the Cl···O bond CP (sign(λ_2) · ρ , a.u.), the most positive MEP value on the halogen atom ($V_{S,max}$, kcal mol⁻¹) and the charge transfer.

R'	$E_{\rm int}$	$\Delta E_{\rm int}$	R_e	a_{donor}	aacc	$10^2 imes ho$	$10^{-1} \times V_{S,\max}$	$10^2 \times CT$
Н	-2.49 (-2.12)		2.95	178.8	117.0	-1.35	1.19	0.84
<i>p</i> Br	-2.95 (-2.47)	-0.46	2.95	178.9	117.7	-1.35	1.60	0.92
pCF_3	-3.25 (-2.73)	-0.76	2.93	178.2	116.8	-1.41	1.86	0.98
pCH_3	-2.38 (-1.97)	+0.11	2.97	178.5	116.5	-1.30	1.07	0.79
pCl	-2.93 (-2.45)	-0.44	2.93	178.9	118.1	-1.41	1.58	0.96
<i>p</i> CN	-3.56 (-3.13)	-1.07	2.90	179.3	119.4	-1.48	2.08	1.08
<i>p</i> F	-2.81 (-2.40)	-0.32	2.95	179.3	117.5	-1.36	1.47	0.90
pI	-2.95 (-2.38)	-0.46	2.93	179.0	117.5	-1.40	1.58	0.95
$pN(CH_3)_2$	-1.90 (-1.52)	+0.59	3.00	179.8	116.2	-1.24	0.63	0.69
pNH_2	-2.00 (-1.63)	+0.49	2.99	178.8	115.8	-1.26	0.73	0.71
<i>p</i> NHCOCH ₃	-2.56 (-2.15)	-0.07	2.97	178.2	115.9	-1.32	1.12	0.80
pNO_2	-3.72 (-3.30)	-1.23	2.89	179.3	119.3	-1.51	2.21	1.13
pOCH ₃	-2.28 (-1.95)	+0.21	2.98	177.5	115.6	-1.28	1.03	0.75
$pO(CH3)_2$	-2.22 (-1.89)	+0.27	2.97	179.1	118.4	-1.31	1.00	0.81
pOH	-2.38 (-2.06)	+0.11	2.97	179.0	117.0	-1.31	1.13	0.81
<i>m</i> Br	-2.86 (-2.38)	-0.37	2.92	178.1	125.2	-1.43	1.60	0.98
mCF ₃	-3.08 (-2.73)	-0.59	2.90	178.1	125.5	-1.47	1.79	1.03
mCH ₃	-2.36 (-2.04)	+0.13	2.95	178.4	118.7	-1.35	1.07	0.84
mCl	-2.96 (-2.45)	-0.47	2.91	179.0	120.4	-1.45	1.59	1.00
mCN	-3.40 (-3.04)	-0.91	2.89	178.8	122.2	-1.52	2.04	1.12
mF	-2.88 (-2.53)	-0.39	2.91	178.6	121.2	-1.44	1.56	0.99
mI	-2.91 (-2.53)	-0.42	2.91	179.4	120.6	-1.44	1.58	1.01
$mN(CH_3)_2$	-2.10 (-1.74)	+0.39	2.98	179.7	117.6	-1.28	0.76	0.75
mNH ₂	-2.27 (-1.89)	+0.22	2.97	179.4	117.5	-1.31	0.90	0.80
<i>m</i> NHCOCH ₃	-2.79 (-2.38)	-0.30	2.94	179.5	118.3	-1.38	1.34	0.91
mNO ₂	-3.49 (-3.12)	-1.00	2.88	179.4	121.5	-1.54	2.09	1.16
mOCH ₃	-2.41 (-2.05)	+0.08	2.96	178.0	117.8	-1.33	1.06	0.83
$mO(CH3)_2$	-2.27 (-1.89)	+0.22	2.94	178.5	121.4	-1.36	1.01	0.86
mOH	-2.46 (-2.09)	+0.03	2.94	179.2	119.6	-1.38	1.16	0.89
oBr	-2.64 (-2.08)	-0.15	2.88	178.3	128.2	-1.50	1.52	1.05
oCF ₃	-2.95 (-2.36)	-0.46	2.87	178.1	125.1	-1.55	1.70	1.14
oCH ₃	-2.40 (-1.87)	+0.09	2.95	179.4	119.3	-1.35	1.09	0.85
oCl	-2.81 (-2.36)	-0.32	2.90	177.8	121.2	-1.48	1.53	1.05
oCN	-3.12 (-2.56)	-0.63	2.86	178.9	125.3	-1.58	1.87	1.20
oF	-2.83 (-2.30)	-0.34	2.88	179.2	122.8	-1.51	1.53	1.07
oI	-2.75 (-2.33)	-0.26	2.90	179.0	123.3	-1.48	1.49	1.05
$oN(CH_3)_2$	-2.28 (-1.77)	+0.21	2.96	177.5	117.7	-1.32	0.97	0.82
oNH ₂	-2.71 (-2.21)	-0.22	2.96	179.1	117.7	-1.34	1.23	0.83
oNHCOCH₁	-3.54 (-2.99)	-1.05	2.93	178.9	118.3	-1.43	1.89	1.00
oNO ₂	-3.18 (-2.72)	-0.69	2.84	177.5	127.1	-1.62	1.94	1.28

Table S3 Energetic values, geometric features and molecular properties of un- and substituted bromobenzene…NMA complexes^{*a*}

oOCH ₃	-2.18 (-1.81)	+0.31	2.95	177.5	118.7	-1.35	0.93	0.84
oO(CH3) ₂	-2.10 (-1.60)	+0.39	2.94	179.7	120.5	-1.37	0.90	0.86
oОН	-3.34 (-2.95)	-0.85	2.91	178.6	120.4	-1.46	1.81	1.00

^{*a*} Interaction energies (E_{int}) and energy differences with respect to the unsubstituted complex (ΔE_{int}) are in kcal mol⁻¹. Interaction energies were also calculated at the M06-2X/aug-pVTZ-PP level of theory (in parenthesis). Geometries features are equilibrium distances (R_e , Å), and donor (O···I–C, α_{donor}) and acceptor (C–O···I, α_{acc}) angles. Molecular properties are the electron density at the Cl···O bond CP (sign(λ_2) · ρ , a.u.), the most positive MEP value on the halogen atom ($V_{S,max}$, kcal mol⁻¹) and the charge transfer.

R'	$E_{\rm int}$	$\Delta E_{\rm int}$	R_e	α_{donor}	aacc	$10^2 imes ho$	$10^{-1} \times V_{S,\max}$	$10^2 \times CT$
Н	-4.04 (-3.39)		3.00	178.4	120.8	-1.52	1.74	1.32
pBr	-4.63 (-4.06)	-0.59	2.98	178.9	121.8	-1.55	2.13	1.44
pCF_3	-4.97 (-3.97)	-0.93	2.96	177.9	121.5	-1.61	2.39	1.57
pCH ₃	-3.89 (-3.42)	+0.15	3.01	178.3	120.5	-1.48	1.62	1.26
pCl	-4.60 (-3.91)	-0.56	2.97	178.7	121.6	-1.59	2.12	1.47
<i>p</i> CN	-5.33 (-4.60)	-1.29	2.94	179.0	123.3	-1.68	2.65	1.67
<i>p</i> F	-4.44 (-3.70)	-0.40	2.98	178.7	121.5	-1.56	2.01	1.43
pI	-4.62 (-3.89)	-0.58	2.97	178.7	121.8	-1.59	2.15	1.48
$pN(CH_3)_2$	-3.33 (-2.89)	+0.71	3.03	178.8	120.6	-1.41	1.20	1.14
pNH ₂	-3.48 (-2.92)	+0.56	3.02	178.5	120.3	-1.44	1.29	1.16
<i>p</i> NHCOCH ₃	-4.12 (-3.45)	-0.08	3.00	178.0	120.6	-1.51	1.69	1.34
pNO ₂	-5.52 (-4.89)	-1.48	2.93	178.9	123.1	-1.71	2.75	1.76
pOCH ₃	-3.84 (-3.27)	+0.20	3.01	178.0	120.4	-1.49	1.59	1.24
$pO(CH3)_2$	-3.73 (-3.26)	+0.31	2.99	179.3	123.6	-1.51	1.55	1.33
pOH	-3.96 (-3.45)	+0.08	3.00	179.0	121.5	-1.50	1.68	1.29
mBr	-4.59 (-4.03)	-0.55	2.95	177.5	125.7	-1.63	2.13	1.54
mCF ₃	-4.89 (-4.33)	-0.85	2.94	179.6	125.0	-1.66	2.34	1.60
mCH ₃	-3.89 (-3.59)	+0.15	2.99	179.2	123.3	-1.52	1.62	1.30
mCl	-4.59 (-3.97)	-0.55	2.94	178.8	126.4	-1.65	2.15	1.55
mCN	-5.22 (-4.36)	-1.18	2.92	178.9	126.9	-1.70	2.59	1.71
mF	-4.56 (-3.89)	-0.52	2.95	179.2	124.9	-1.63	2.12	1.52
mI	-4.58 (-4.03)	-0.54	2.95	179.2	125.6	-1.63	2.11	1.54
$mN(CH_3)_2$	-3.54 (-2.87)	+0.50	3.01	179.5	122.4	-1.46	1.33	1.26
mNH ₂	-3.74 (-3.29)	+0.30	3.00	179.4	121.8	-1.49	1.46	1.25
mNHCOCH ₃	-4.35 (-3.83)	-0.31	2.98	179.0	122.2	-1.57	1.91	1.40
mNO ₂	-5.33 (-4.70)	-1.29	2.91	179.3	126.6	-1.73	2.65	1.74
mOCH ₃	-3.96 (-3.59)	+0.08	3.00	178.6	121.1	-1.51	1.62	1.31
$mO(CH3)_2$	-3.85 (-3.24)	+0.19	2.98	179.0	124.8	-1.56	1.57	1.35
mOH	-4.01 (-3.48)	+0.03	2.97	179.0	125.9	-1.57	1.72	1.38
oBr	-4.56 (-4.07)	-0.52	2.92	179.8	127.2	-1.69	2.10	1.65
oCF ₃	-4.82 (-4.28)	-0.78	2.91	178.0	125.2	-1.73	2.26	1.75
oCH ₃	-3.89 (-3.39)	+0.15	2.99	178.3	122.0	-1.52	1.62	1.31
oCl	-4.63 (-4.20)	-0.59	2.93	177.5	123.7	-1.67	2.10	1.61
oCN	-5.00 (-4.35)	-0.96	2.90	179.4	131.9	-1.76	2.44	1.76
oF	-4.66 (-3.96)	-0.62	2.92	178.8	125.3	-1.70	2.13	1.63
oI	-4.57 (-4.15)	-0.53	2.93	178.6	125.9	-1.69	2.08	1.64
$oN(CH_3)_2$	-3.74 (-3.22)	+0.30	2.98	177.9	123.0	-1.53	1.51	1.33
oNH ₂	-4.10 (-3.68)	-0.06	2.99	178.9	122.8	-1.52	1.75	1.29
oNHCOCH ₃	-5.02 (-4.29)	-0.98	2.96	178.8	122.9	-1.62	2.41	1.51
oNO ₂	-5.25 (-4.65)	-1.21	2.86	178.2	136.0	-1.82	2.61	1.85

Table S4 Energetic values, geometric features and molecular properties of un- and substituted iodobenzene \cdots NMA complexes^a

oOCH ₃	-3.78 (-3.23)	+0.26	2.97	178.0	124.0	-1.55	1.53	1.34
oO(CH3) ₂	-3.70 (-2.92)	+0.34	2.97	178.6	124.8	-1.56	1.51	1.34
oОН	-4.83 (-4.36)	-0.79	2.95	179.3	126.8	-1.65	2.32	1.51

^{*a*} Interaction energies (E_{int}) and energy differences with respect to the unsubstituted complex (ΔE_{int}) are in kcal mol⁻¹. Interaction energies were also calculated at the M06-2X/aug-pVTZ-PP level of theory (in parenthesis). Geometries features are equilibrium distances (R_e , Å), and donor (O···I–C, α_{donor}) and acceptor (C–O···I, α_{acc}) angles. Molecular properties are the electron density at the Cl···O bond CP (sign(λ_2) · ρ , a.u.), the most positive MEP value on the halogen atom ($V_{S,max}$, kcal mol⁻¹) and the charge transfer.

D	1	$\overline{0^1 \times q_X}$			$10^1 \times q_0$			$10^1 \times q_R$			
K	Cl	Br	Ι	Cl	Br	Ι	Cl	Br	Ι		
Н	0.258	0.968	1.992	-6.370	-6.421	-6.481					
pBr	0.355	1.083	2.122	-6.386	-6.437	-6.508	0.649	0.637	0.615		
pCF_3	0.211	0.980	2.078	-6.401	-6.448	-6.521	0.011	0.004	-0.003		
<i>p</i> CH ₃	0.217	0.936	1.940	-6.364	-6.412	-6.485	0.363	0.323	0.317		
pCl	0.359	1.087	2.124	-6.397	-6.431	-6.510	0.031	0.021	-0.002		
<i>p</i> CN	0.552	1.291	2.327	-6.415	-6.468	-6.543	-0.297	-0.303	-0.308		
pF	0.319	1.038	2.074	-6.383	-6.433	-6.487	-3.385	-3.390	-3.397		
pІ	0.372	1.096	2.128	-6.388	-6.439	-6.510	1.559	1.545	1.523		
$pN(CH_3)_2$	0.117	0.808	1.676	-6.341	-6.391	-6.463	-0.450	-0.724	-0.402		
pNH_2	0.122	0.820	1.832	-6.350	-6.396	-6.462	-0.355	-0.357	-0.354		
<i>p</i> NHCOCH ₃	0.262	0.768	1.844	-6.380	-6.421	-6.485	-1.544	-1.522	-1.527		
pNO_2	0.343	1.124	2.234	-6.423	-6.473	-6.546	-2.394	-2.402	-2.412		
<i>p</i> OCH ₃	0.212	0.922	1.932	-6.362	-6.409	-6.476	-2.035	-2.041	-2.045		
<i>p</i> O(CH3) ₂	-0.025	0.716	1.808	-6.357	-6.406	-6.478	-2.066	-2.070	-2.073		
pOH	0.229	0.934	1.956	-6.361	-6.410	-6.480	-1.986	-1.989	-1.990		
mBr	0.441	1.158	2.186	-6.395	-6.450	-6.518	0.692	0.674	0.640		
mCF ₃	0.504	1.218	2.243	-6.409	-6.461	-6.530	0.039	0.032	0.020		
mCH ₃	0.244	0.949	1.961	-6.373	-6.418	-6.489	0.398	0.390	0.347		
mCl	0.424	1.160	2.199	-6.390	-6.440	-6.525	0.079	0.047	0.022		
mCN	0.525	1.277	2.323	-6.410	-6.466	-6.547	-0.226	-0.253	-0.269		
mF	0.433	1.149	2.174	-6.390	-6.443	-6.519	-3.363	-3.373	-3.385		
mI	0.424	1.146	2.188	-6.389	-6.441	-6.520	1.607	1.580	1.543		
$mN(CH_3)_2$	0.201	0.876	1.737	-6.361	-6.404	-6.462	-0.496	-0.335	-0.345		
mNH_2	0.206	0.913	1.928	-6.363	-6.409	-6.476	-0.250	-0.265	-0.305		
mNHCOCH ₃	0.289	1.009	2.030	-6.386	-6.426	-6.504	-1.480	-1.495	-1.511		
mNO_2	0.580	1.122	2.375	-6.412	-6.463	-6.551	-2.320	-2.314	-2.334		
mOCH ₃	0.284	1.010	2.018	-6.366	-6.420	-6.492	-1.992	-2.017	-2.018		

Table S5 NBO charges (q, e) of un- and substituted halobenzene...NMA complexes^{*a*}

<i>m</i> O(CH3) ₂	0.307	1.013	2.021	-6.365	-6.414	-6.489	-2.036	-2.046	-2.061
mOH	0.323	1.050	2.070	-6.371	-6.414	-6.496	-1.934	-1.955	-1.967
oBr	0.634	1.387	2.434	-6.386	-6.443	-6.520	0.950	0.900	0.808
oCF ₃	0.712	1.446	2.475	-6.407	-6.445	-6.519	0.177	0.153	0.102
oCH ₃	0.169	0.878	1.876	-6.374	-6.419	-6.487	0.548	0.533	0.467
oCl	0.622	1.366	2.417	-6.379	-6.436	-6.508	0.311	0.265	0.185
oCN	0.816	1.575	2.654	-6.398	-6.455	-6.554	-0.134	-0.157	-0.208
oF	0.620	1.352	2.378	-6.378	-6.437	-6.517	-3.244	-3.280	-3.335
oI	0.572	1.333	2.398	-6.377	-6.438	-6.515	1.892	1.830	1.728
$oN(CH_3)_2$	0.295	1.017	2.047	-6.372	-6.412	-6.482	-0.867	-0.941	-1.049
$o \mathrm{NH}_2$	0.053	0.775	1.785	-6.399	-6.435	-6.499	-0.041	-0.094	-0.150
oNHCOCH ₃	-0.026	0.750	1.929	-6.435	-6.470	-6.541	-1.333	-1.386	-1.417
oNO_2	0.966	1.880	2.850	-6.410	-6.453	-6.575	-2.093	-2.271	-2.231
oOCH ₃	0.448	1.168	2.178	-6.354	-6.410	-6.483	-1.844	-1.882	-1.941
<i>o</i> O(CH3) ₂	0.252	1.155	2.158	-6.349	-6.399	-6.482	-1.906	-1.904	-1.964
oОН	0.164	0.892	1.926	-6.426	-6.463	-6.545	-1.766	-1.819	-1.892

 $a q_X, q_{O}$ and q_R are the NBO charges for the interacting halogen atom, oxygen atom, and the corresponding substituent, respectively.