Supporting Information

High Lithium Ion Battery Performance Enhancement by Controlled Carbon Coating of TiO$_2$ Hierarchically Porous Hollow Spheres

Jun Jina, Xiao-Ning Rena, Yi Lua, Xian-Feng Zhenga, Hong-En Wanga, Li-Hua Chena, Xiao-Yu Yanga, Yu Lia,* and Bao-Lian Sua,b,c,*

aLaboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070, Wuhan, Hubei, China; Email: yu.li@whut.edu.cn and baoliansu@whut.edu.cn

bLaboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium; E-mail: bao-lian.su@unamur.be

cDepartment of Chemistry and Clare Hall, University of Cambridge, Cambridge CB21 EW, United Kingdom; E-mail: bls26@cam.ac.uk
Fig. S1. The SEM image of the TiO$_2$ solid spheres (TSS).
Fig. S2. The optical images of the TiO$_2$-MS, TiO$_2$/C-MS, TiO$_2$-HS and TiO$_2$/C-HS powders.
Fig. S3. TG curve of TiO$_2$/C-MS under an air flow at temperature ramp of 5 °C min$^{-1}$.
Fig. S4. TG and DSC curves of TiO$_2$/C-HS under an air flow at temperature ramp of 5 °C min$^{-1}$.
Fig. S5. (a) Charge and discharge curves of TiO$_2$-MS at a current of 0.2 C for the first cycle, (b) rate performance of TiO$_2$-MS, (c) cycle performance of TiO$_2$-MS at a current density of 1 C.
Fig.S6. (a) Charge and discharge curves of TiO$_2$/C-MS at a current of 0.2 C for the first cycle, (b) rate performance of TiO$_2$/C-MS, (c) cycle performance of TiO$_2$/C-MS at a current density of 1 C.