Palladium-Bisoxazoline Supported Catalyst for Selective Synthesis of Aryl Esters and Aryl Amides via Carbonylative Coupling Reactions

Mansur B. Ibrahima, Rami Suleimanb, Mohammed Fettouhia and Bassam El Alia*

a Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
b Center of Research Excellence in Corrosion, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Supplementary information

\textbf{Figure S1.} FT-IR Spectrum of Unmodified Merifield’s Resin
Figure S2. FT-IR Spectrum of Merifield’s Resin Supported BOX Ligand (BOX-M).

Figure S3. FT-IR Spectra of Merifield’s Resin Supported Pd-BOX Catalyst (Pd-BOX-M).
Figure S4. 1H NMR Spectrum of BOX-I

Figure S5. 1H NMR Spectrum of BOX-I
Figure S6. 1H NMR Spectrum of BOX-OH

Figure S7. 13C NMR Spectrum of BOX-OH
Figure S8. CP-MAS 13C NMR spectrum of Merrifield’s resin supported BOX ligand (BOX-M).

Figure S9. CP-MAS 13C NMR spectrum of Merrifield’s resin supported Pd-BOX catalyst (Pd-BOX-M).
Figure S10. TGA Spectrum of Merifield’s resin support.

Figure S11. TGA plot of Merrifield’s resin supported BOX ligand (BOX-M).
Figure S12. TGA plot of Merrifield’s resin supported Pd-BOX catalyst (Pd-BOX-M).

Figure S13. Scanning Electron Micrograph of (a) Merifield’s Resin (b) Merifield’s Resin Supported BOX Ligand (c) Merifield’s Resin Supported Pd-BOX Catalyst.