Electronic Supplementary Information (ESI)

Pillar[5]arene-containing cross-linked polymer: synthesis, characterization, and adsorption of dihaloalkanes and n-alkylene dinitriles

Fengqing Ye, Ruijin Wei, Lingyun Wang, Herbert Meier and Derong Cao

1. Materials and methods

3. Standard curves of the eight adsorbates

4. Thermogravimetric analysis of PS-P5 and CMPS

5. Elemental analysis of HOP5, PS-P5 and CMPS

6. Exponential function between adsorbed amount of DBB and time

7. Association constants Ka of the host-guest inclusion complexation

8. Reversibility of PS-P5
1. Materials and methods

All reagents were purchased from commercial sources and used without further purification, unless otherwise noted. Commercially available Merrifield resin CMPS (1% DVB cross linked, 100~200 mesh, 2.4 mmol equivalent of Cl/g of resin) was purchased from Aladdin. Monohydroxy pillar[5]arene HOP5 was prepared according to the literature procedure(S1). GC analyses were obtained on a Thermo Scientific Focus GC Gas Chromatograph equipped with a DB-5 30 m × 0.25 mm ID × 0.25 μm capillary column (Agilent) and an FID detector. The following GC oven temperature programs were used: 90 °C hold for 2 min, ramp 10 °C/min to a final temperature of 280 °C, and hold for 3 min. Nitrogen was used as a carrier gas, with a constant column flow of 2.0 mL/min. The injector temperature was held at 260 °C. FT-IR spectra were performed on a VERTEX 70 spectrometer. Solid-13C NMR spectra were obtained on an Avance III HD 400 spectrometer. TGA were performed on a STA449 F3 simultaneous Thermal Analyzer. Elemental analysis were performed on Vario EL Cube, Elementar.

CMPS (830 mg, 2 mmol) and HOP5 (1000 mg, 1.36 mmol) were mixed in the acetone solution. Then K₂CO₃ (2.2 g, 1.6 mmol) and KI (600 mg, 3.6 mmol) were added to the suspension. The mixture was stirred under reflux for 5 days under argon atmosphere. The solid was filtered and washed with water and acetone to give PS-P5.
as white powder. From the filtrate, 242 mg of unreacted HOP5 was recycled. The amount of loaded pillar[5]arene on the polymeric support was evaluated by the difference of mass taken before and after the coupling reaction of HOP5. The result showed that 50% of the chlorine content was converted to pillar[5]arene moieties, which was calculated to be 50 mol % functionalization, leading to the acquirement of 1.2 mmol chlorine and 1.2 mmol pillar[5]arene units per gram of PS-P5.

3. Standard curves of the eight adsorbates

The typical process for the standard curves of eight adsorbates: we firstly prepared a series of DBB solutions with different concentrations (50, 100, 150, 200, 250, 300, 350, 400, 450, 500 \(\mu\)g/mL) in toluene, then measured the corresponding peak areas by Gas Chromatography. Finally, the relationship between the peak areas and the concentrations were obtained using Origin software. The results showed that the peak areas had good linear relations with the concentrations of all the eight adsorbates.
Fig. S1. Standard curve of DCB.

Fig. S2. Standard curve of DCH.
Fig. S3. Standard curve of DBB.

Fig. S4. Standard curve of DBH.
Fig. S5. Standard curve of DIB.

Fig. S6. Standard curve of DIH
Fig. S7. Standard curve of DNB.

Fig. S8. Standard curve of DNH.
4. Thermogravimetric analysis of PS-P5 and CMPS

The first step (250~300 °C) of weight loss of PS-P5 (curve b) can primarily be ascribed to the loss of water and solvent desorption from the solid materials, followed by a plateau until 400 °C. Then the second weight loss step (400~500 °C) is ascribed to the pillar[5]arene and CMPS decomposition. The residual weight percentage for HOP5 is about 45% when heated to 800 °C (curve a), while it is about 15% for CMPS (curve c). For PS-P5, the corresponding residual weight is about 30%, indicating that pillar[5]arene HOP5 was successfully modified on CMPS.

![TGA curves of (a) HOP5, (b) PS-P5, (c) CMPS](image)

Fig. S9. TGA curves of (a) HOP5, (b) PS-P5, (c) CMPS
5. Elemental analysis of HOP5, PS-P5 and CMPS

Table S1. The element contents of HOP5, PS-P5 and CMPS.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Element content (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C[%]</td>
</tr>
<tr>
<td>HOP5</td>
<td>70.97</td>
</tr>
<tr>
<td>PS-P5</td>
<td>79.49</td>
</tr>
<tr>
<td>CMPS</td>
<td>85.72</td>
</tr>
</tbody>
</table>

6. Exponential function between the adsorbed amount of DBB and time

The adsorbed amount of DBB on column and time meet exponential function as below:
\[y = 3995.5 - 3476.4 \times e^{x} \]

Moreover, the differential equation of the exponential function is calculated as below:

\[y' = 69.528 \times e^{x} \]

As is depicted in the differential equation, the adsorption rate of the PS-P5 column toward DBB decreases gradually over time and reached equilibrium eventually.
7. Association constants K_a of the host-guest inclusion complexation

Table S2. Association constants K_a of the host-guest inclusion complexation.

<table>
<thead>
<tr>
<th>Host</th>
<th>Guest</th>
<th>K_a (M$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtP5Aa</td>
<td>DCB</td>
<td>$(1.9 \pm 0.2) \times 10^3$</td>
</tr>
<tr>
<td>EtP5Aa</td>
<td>DBB</td>
<td>$(4.9 \pm 0.3) \times 10^3$</td>
</tr>
<tr>
<td>EtP5Aa</td>
<td>DIB</td>
<td>$(1.0 \pm 0.1) \times 10^4$</td>
</tr>
<tr>
<td>EtP5Ab</td>
<td>DNB</td>
<td>$-$ c</td>
</tr>
<tr>
<td>EtP5Ab</td>
<td>DNH</td>
<td>$(1.5 \pm 0.3) \times 10^4$</td>
</tr>
</tbody>
</table>

a In CDCl$_3$, 298 K.

b In the mixture of DMSO-d_6 : CDCl$_3$ (1:9, v:v), 298 K.

c The free guest DNB is not observed in the presence of one equivalent of EtP5A host, suggesting very strong binding affinities in 1:9 DMSO-d_6:CDCl$_3$. The value is $(3.6 \pm 0.2) \times 10^3$ M$^{-1}$ in DMSO-d_6:CDCl$_3$ (5 : 5).

7. Reversibility of PS-P5

The reversibility of PS-P5 was tested. The initial adsorption ratio of fresh PS-P5 toward DBB is 56.1%. Then acetone was added to PS-P5 and the mixture was stirred for 12 h. The solid was filtered and washed with acetone. The recovered PS-P5 was dried and used to the next adsorption experiment. The process above was repeated for three times and the results were shown in Table S3.
Table S3. The reversibility of PS-P5.

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Adsorption Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td>56.1</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>55.8</td>
</tr>
<tr>
<td>Cycle 3</td>
<td>54.9</td>
</tr>
<tr>
<td>Cycle 4</td>
<td>54.7</td>
</tr>
</tbody>
</table>

When PS-P5 was regenerated and reused for three recycles, the adsorption ratio can still reach to 97.5% of the initial 56.1%.

References: