Supplement materials-magnetic properties

Supporting data for frustrated ferromagnetic (FM) state of GeNFe₃ are performed in Fig. S1 and Fig. S2. In the left axis of Fig. S1(a), a bifurcation appears at an irreversibility temperature T_{irr} (defined by the temperature with $M_{ZFC} = M_{FC}$), and zero-field cooling curve exhibits a peak around the temperature $T_{\rm f}$ (defined by the maximum value of $M_{\rm ZFC}$). Meanwhile, in Fig. S1(b), with increasing H, both $T_{\rm f}$ and $T_{\rm irr}$ shift to lower temperature. As shown in the inset of Fig. S1(b), the field dependence of $T_{\rm f}$ can be well described by the $H^{2/3}$ law. In Fig. S1(c)-(d), both $\chi'(T)$ and $\chi''(T)$ exhibit strongly frequency-dependent peaks. The relaxation time is described by a power law $\tau = \tau_0 [T_f(f)/T_0 - 1]^{-zv}$, $T_f > T_0$, where T_0 is the freezing temperature, τ_0 is the characteristic flipping time, τ is the relaxation time [$\tau = 1/(2\pi f)$], and zv is the dynamical critical exponent. All the parameters ($T_0 = 40.5$ K, zv = 4.86, $\tau_0 = 4.33 \times 10^{-12}$ s) are obtained by fitting the power law as displayed in the inset of Fig. S1(c). In addition, Isothermal remanent magnetizations $(M_{\rm IRM})$ were measured on cooling the sample from 200 to 5 K at ZFC process. The data are fitted according to the formula $M_{\rm IRM}(t) = M_0 - \alpha \ln(t)$ as shown in Fig. S2(a)-(e). These above results consistently confirm a magnetic frozen behavior in GeNFe₃, similar to a spin glass state or frustrated FM state. By comparison, the ground state of GeNFe₃ should be a frustrated FM state, similar to many other magnetic frustrated systems.^{S1-S7}

FIG. S1: (a) Temperature dependent M(T) and the derivative of ZFC curve dM/dT for GeNFe₃. The inset show the M(H) curves at 5 K, 150 K, and 300 K; (b) M(T) curves under ZFC/FC processes at different H. The inset displays T_f as a function of $H^{2/3}$. (c) and (d) Temperature dependence of ac susceptibility at several fixed frequencies: (c) real components. The inset presents the best fit by a power law; (d) the imaginary parts.

FIG. S2. (a)-(e) M_{IRM} vs *t* at different *H* and the solid lines are fitted by $M_{\text{IRM}}(t) = M_0$ - $\alpha \ln(t)$: (a) for 50 Oe; (b) for 100 Oe; (c) for 300 Oe; (d) for 500 Oe; (e) for 1000 Oe. (f) The fitted parameters M_0 and α as a function of *H*.

References

^{S1} W. J. Feng, D. Li, W. J. Ren, Y. B. Li, W. F. Li, J. Li, Y. Q. Zhang, and Z. D. Zhang, Phys. Rev. B, 2006, **73**, 205105.

^{S2} B. S. Wang, P. Tong, Y. P. Sun, X. B. Zhu, Z. R. Yang, W. H. Song, and J. M. Dai, Appl. Phys. Lett., 2010, 97, 042508.

^{S3} D. X. Li, S. Nimori, Y. Shiokawa, Y. Haga, E. Yamamoto, and Y. Onuki, Phys. Rev. B, 2003, 68, 172405.

^{S4} S. Dhar, O. Brandt, A. Trampert, K. J. Friedland, Y. J. Sun, and K. H. Ploog, Phys. Rev. B, 2003, 67, 165205.

^{S5} J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993).

- ^{S6} A. Aharoni and E. P. Wohlfarth, J. Appl. Phys., 1984, **55**, 1664.
- ^{S7} D. Tahara1, Y. Motome, and M. Imada, J. Phys. Soc. Jpn., 2007, 76, 013708.