SUPPLEMENTARY INFORMATION

Preparation of neutral red functionalized Fe₃O₄@SiO₂ and its application for magnetic solid phase extraction of trace Hg(II) from environmental water samples

Chunlai Wuᵃᵇ, Guifen Zhuᵃ, Jing Fanᵃ*, Jianji Wangᶜ

a. School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China
b. School of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, 471023, P.R. China
c. School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reaction, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China

* Corresponding author: Tel. +86-373-3325719
E-mail: fanjing@htu.cn
Pseudo first order and pseudo second order models

The pseudo first order and pseudo second order models can be expressed by Eqs. (S1) and (S2) [1], respectively:

\[
\ln \left(\frac{q_e - q_t}{q_e} \right) = -k_1 t \quad \text{(S1)}
\]

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \quad \text{(S2)}
\]

Here, in Eq. (S1), \(k_1 \) is the pseudo first order rate constant \((\text{min}^{-1})\) of the adsorption, and \(q_e \) and \(q_t \) (mg g\(^{-1}\)) are the amounts of metal ion adsorbed at equilibrium time and at time \(t \), respectively. The values of \(\ln(q_e - q_t) \) were calculated from the experimental data and used to plot against \(t \) (min). In Eq. (S2), \(k_2 \) is the pseudo second order rate constant of the adsorption. The values of \(q_e \) and \(k_2 \) could be calculated from slope and intercept of the linear plot of \(t/q_t \) vs. \(t \). The kinetic parameters acquired from fitting results were summarized in Table S1.

<table>
<thead>
<tr>
<th>(C_0) mg L(^{-1})</th>
<th>q(_e) (exp) (mg g(^{-1}))</th>
<th>Pseudo first order kinetics</th>
<th>Pseudo second order kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(k_1)</td>
<td>(q_e, \text{cal})</td>
</tr>
<tr>
<td>2</td>
<td>1.93</td>
<td>0.004</td>
<td>0.226</td>
</tr>
</tbody>
</table>

Langmuir and Freundlich adsorption isotherm models

The Langmuir isotherm [2] is given as:

\[
\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m K_L} \quad \text{(S3)}
\]

where \(q_e \) is the equilibrium amount of Cd(II) adsorbed on the absorbent (mg g\(^{-1}\)), \(q_m \) is the maximum adsorption capacity of Cd(II) on the adsorbent (mg g\(^{-1}\)), \(C_e \) describes the equilibrium concentration of Cd(II) (mg L\(^{-1}\)), and \(K_L \) (L mg\(^{-1}\)) is a Langmuir adsorption constant related to the adsorption energy.

The Freundlich model [2] can be presented by

\[
\ln q_e = \ln K_F + \frac{1}{n} \ln C_e \quad \text{(S4)}
\]

where \(q_e \) and \(C_e \) have the same meanings with those in the Langmuir model, and \(K_F \) and \(n \) are
Freundlich constants related to the maximum adsorption capacity and the adsorption intensity, respectively.

Table S2. Langmuir and Freundlich parameters for Hg(II) adsorption by Fe\textsubscript{3}O\textsubscript{4}@SiO\textsubscript{2}-NR

<table>
<thead>
<tr>
<th>T(°C)</th>
<th>(K_L \text{ (L mg}^{-1}))</th>
<th>(q_m \text{ (mg g}^{-1}))</th>
<th>(R^2)</th>
<th>(K_F)</th>
<th>(n)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.05</td>
<td>83.71</td>
<td>0.997</td>
<td>5.62</td>
<td>1.91</td>
<td>0.971</td>
</tr>
</tbody>
</table>

References

[1] R.R. Shan, L.G. Yan, K. Yang, Y.F. Hao, B. Du, Adsorption of Cd(II) by Mg–Al–CO\textsubscript{3} and magnetic Fe\textsubscript{3}O\textsubscript{4}/Mg–Al–CO\textsubscript{3} layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies, J. Hazard. Mater. 299 (2015) 42-49.