Electronic Supplementary Information:

Facile one-pot preparation of Pd–Au/PEDOT/graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection

Zhen Liua,b, Baoyang Lub, Yansha Gaob, Taotao Yangb, Ruirui Yuea,*, Jingkun Xub,*, Lei Gaob

aCollege of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China

bJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China

*Corresponding authors. Fax: +86-791-83823320, Tel.: +86-791-88537967,
E-mail: xujingkun@tsinghua.org.cn(J. Xu)
yuerui.923@163.com(R. Yue)
Fig. S1. Digital photo of the aqueous dispersions of Pd–Au/PEDOT/rGO with the precursor molar ratios of H_2PdCl_4 to HAuCl_4 are 3:1, 2:1, 1:1, 1:2 and 1:3 after two weeks of static placement.
Fig. S2. CVs of the Pd–Au/PEDOT/rGO/GCE with Pd/Au molar ratio of 3:1, 2:1, 1:1, 1:2 and 1:3 obtained in (A) the pure BR buffer solution (pH = 3.0) and (B) BR buffer solution (pH = 3.0) containing 50 µM CA at scan rate of 50 mV s⁻¹.
Fig. S3. High resolution S2p XPS spectrum of Pd–Au/PEDOT/rGO.
Fig. S4. (A) CVs and (B) Nyquist plots of the Pd–Au/PEDOT/rGO/GCE with Pd/Au molar ratio of 3:1, 2:1, 1:1, 1:2 and 1:3 recorded in 5.0 mM [Fe(CN)₆]³⁻/⁴⁻ (1:1) solution containing 0.1 M KCl, scan rate: 50 mV s⁻¹, frequency region from 0.1–100 KHz.
Fig. S5. DPVs of Pd–Au/PEDOT/rGO/GCE obtained in BR buffer solution (pH = 3.0) containing 50µM CA in the presence of different interfering species: (A) malic acid, (B) citric acid, (C) tartaric acid and (D) ascorbic acid at various concentrations.
Fig. S6. DPVs of Pd–Au/PEDOT/rGO/GCE obtained in BR buffer solution (pH = 3.0) containing 50 µM CA in the presence of different interfering species: (A) vanillic acid, (B) catechol, (C) p-coumaric acid, (D) gallic acid, (E) ferulic acid and (F) sinapic acid at various concentrations.