Supporting Information

Sol-Gel derived Mesoporous GaAlPO₄ Glasses for Heavy Metal Ion Sequestration

Jin He, Pengfei Ma, Ge Zhang, Rihong Li and Long Zhang

aKey Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
bSchool of Materials, University of Manchester, Manchester M13 9PL, UK
cInstitute of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904, Israel

Corresponding authors:

*Email: lzhang@siom.ac.cn (L.Z); lirihong@siom.ac.cn (R.L);
Tel: +86 21 69918196 (L.Z); +86 21 69918841(R.L)
Fax: +86 21 69918675
Preparation of GaAlPO$_4$ mesoporous glasses

Gallium aluminum phosphate gels and glasses were prepared via a sol-gel route shown in Fig. S1a, using aluminum lactate (98%, Fluka), gallium nitrite (99%, sigma) and H$_3$PO$_4$ (98%, Fluka). In a typical preparation, the desired amount of aluminum lactate and gallium nitrate added up to 0.004 mol were dissolved in distilled water, followed by the addition of H$_3$PO$_4$ (1M) solution prepared by dissolving solid H$_3$PO$_4$ (98%, Fluka) in distilled water, the volume of which was adjusted to the desired P/Al+Ga molar ratio in the mixture. The pH of the mixing solutions was controlled within 0.01 units by a pH meter (Mettler Toledo pH s20k, Switzerland). After stirring for 4h, the resulting clear solution was spread onto a flat surface and then gelled in the open air for 2–3 days at room temperature. The clear and free-flowing properties of the precursor sols also offer some potential applications as inert coating materials. Upon air-drying the sols, transparent colorless gallium aluminum phosphate xerogels were prepared. After heating the xerogels at 600 °C for several hours in ambient atmosphere,
homogeneous Ga$_2$O$_3$-Al$_2$O$_3$-P$_2$O$_5$ glasses (GAPs) pieces were finally obtained. Their non-crystalline state was confirmed by X-ray powder diffraction patterns (Guinier method, Cu Ka1 radiation), revealing the typical response of glassy samples.

![XRD of GAPs](image)

Fig S2. The XRD of calcined Ga$_{0.3}$Al$_{0.7}$PO$_4$ and Ga$_{0.5}$Al$_{0.5}$PO$_4$

![Thermogravimetric traces](image)

Fig. S3 (a) The thermogravimetric (TG) traces of Ga$_{0.1}$Al$_{0.9}$PO$_4$ xerogel formed at room temperature. (b) TGA and DTA of Ga$_{0.1}$Al$_{0.9}$PO$_4$ glass after annealing at 600 °C for 6 h.

Table S1 Real composition, Glass Transition (T_g) and Crystallization Temperatures (T_x) of the Annealed Glassy Materials

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ga(a.t.%)</th>
<th>Al(a.t.%)</th>
<th>P(a.t.%)</th>
<th>T_g (°C)</th>
<th>T_x (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga${0.01}$Al${0.99}$PO$_4$</td>
<td>0.00208</td>
<td>0.2063</td>
<td>0.1973</td>
<td>992</td>
<td>1058</td>
</tr>
<tr>
<td>Ga${0.02}$Al${0.98}$PO$_4$</td>
<td>0.00407</td>
<td>0.1992</td>
<td>0.1982</td>
<td>995</td>
<td>1060</td>
</tr>
<tr>
<td>Ga${0.05}$Al${0.95}$PO$_4$</td>
<td>0.0103</td>
<td>0.1956</td>
<td>0.1980</td>
<td>980</td>
<td>1042</td>
</tr>
<tr>
<td>Ga${0.1}$Al${0.9}$PO$_4$</td>
<td>0.0206</td>
<td>0.1835</td>
<td>0.1997</td>
<td>905</td>
<td>1088</td>
</tr>
<tr>
<td>Ga${0.2}$Al${0.8}$PO$_4$</td>
<td>0.0402</td>
<td>0.1606</td>
<td>0.2049</td>
<td>807</td>
<td>900</td>
</tr>
<tr>
<td>Ga${0.25}$Al${0.75}$PO$_4$</td>
<td>0.0513</td>
<td>0.1538</td>
<td>0.1997</td>
<td>890</td>
<td>988</td>
</tr>
</tbody>
</table>
The structural discussion of GaAlPO$_4$ Glasses

Fig. S4 shows the 31P (right) and 27Al (left) MAS-NMR spectra of gallium aluminum phosphate glasses along the compositional line Ga$_x$Al$_{1-x}$PO$_4$. For contrast, Trace a and h are from gallium-free AlPO$_4$ glasses. Trace f and trace g are from crystalline GaPO$_4$ and AlPO$_4$ respectively. Spinning sidebands are indicated with asterisks.

Table S2 27Al and 31P isotropic chemical shift (δ_{iso}) via 27Al and 31P MAS spectra data for some representative samples in the present study

<table>
<thead>
<tr>
<th>Samples</th>
<th>31P (ppm)</th>
<th>AlO$_4$(ppm)</th>
<th>AlO$_5$(ppm)</th>
<th>AlO$_6$(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlPO$_4$</td>
<td>-25.4</td>
<td>37.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ga${0.02}$Al${0.98}$PO$_4$</td>
<td>—</td>
<td>37.6</td>
<td>9.0</td>
<td>-12.0</td>
</tr>
<tr>
<td>Ga${0.05}$Al${0.95}$PO$_4$</td>
<td>-24.5</td>
<td>37.3</td>
<td>9.0</td>
<td>-12.7</td>
</tr>
<tr>
<td>Ga${0.1}$Al${0.9}$PO$_4$</td>
<td>-23.4</td>
<td>39.4</td>
<td>9.3</td>
<td>-14.1</td>
</tr>
<tr>
<td>Ga${0.2}$Al${0.8}$PO$_4$</td>
<td>-22.7</td>
<td>37.6</td>
<td>9.1</td>
<td>-13.7</td>
</tr>
<tr>
<td>Ga${0.25}$Al${0.75}$PO$_4$</td>
<td>—</td>
<td>38.1</td>
<td>9.3</td>
<td>-13.9</td>
</tr>
<tr>
<td>Ga${0.3}$Al${0.7}$PO$_4$</td>
<td>—</td>
<td>37.5</td>
<td>8.8</td>
<td>-13.6</td>
</tr>
<tr>
<td>Ga${0.5}$Al${0.5}$PO$_4$</td>
<td>-22.2</td>
<td>38.0</td>
<td>9.0</td>
<td>-13.7</td>
</tr>
</tbody>
</table>

Fig. S4 shows the 31P (right) and 27Al (left) MAS spectra of some representative sol-gel derived glasses annealed at 600-700 °C. All the glasses were obtained through heating the corresponding xerogels formed at 50 °C from the sols with pH around 2.8-3.2. The isotropic chemical shifts (δ_{iso}) of both 31P and 27Al are listed in Table S2. The data of Fig. S4 permit a comprehensive structural
discussion of the ternary Ga$_x$Al$_{1-x}$PO$_4$ glass system. The spectra of AlPO$_4$ are also shown in the bottom of these figures.

31P NMR chemical shift values for phosphates are decided by a number of parameters like (a) the electronegativity and charge to radius ratio of nearest and next nearest neighbours, (b) O-P-O angles, (c) P-O-M angles, (d) P-O bond order, etc [1]. The nearest neighbours and their number around P are same for both AlPO$_4$ and GaPO$_4$. As the radii of Ga$^{3+}$ and Al$^{3+}$ are 0.05 and 0.062 nm, respectively, and the Pauling’s electro-negativities of Ga$^{3+}$ and Al$^{3+}$ are approximately 1.5 and 1.6, respectively. The average P-O-M angles are found to be significantly different, namely, 145 and 132° for AlPO$_4$ and GaPO$_4$, respectively, and for intermediate compositions this angle varied in a systematic manner which is consistent with the monotonic variation of chemical shift with composition [2]. As the P-O-M angle decreases, the s character of bridging oxygen atoms decreases, which results in the reduced shielding around P nuclei thereby increasing chemical shift values. Both AlPO$_4$ and GaPO$_4$ show a significant difference in their chemical shifts (δ) [3]. The value of δ is -25.4 ppm for AlPO$_4$, and the chemical shift value for crystalline GaPO$_4$ is -8.5 ppm. This increase in the chemical shift value for GaPO$_4$ is arising due to the decreased cationic field strength, $\langle \left(Z_{\text{eff}}/r \right) q \rangle$, electron affinity of Ga$^{3+}$ as compared to that of Al$^{3+}$ ions and the decreased value of Ga-O-P bond angle as compared to that of Al-O-P as revealed by the crystal structure of these two compounds (Fig. S4).

The origin of the 31P signal shifts towards higher frequency for Ga$_x$Al$_{1-x}$PO$_4$ glasses can be understood in terms of the structural configurations of 31P with varying number of Al$^{3+}$ and Ga$^{3+}$ as its nearest neighbours. For Ga$_x$Al$_{1-x}$PO$_4$ glasses, the four oxygen atoms of PO$_4$ tetrahedral units are connected either to Al$^{3+}$ or Ga$^{3+}$ cations. Depending on the contents of Al$^{3+}$ and Ga$^{3+}$ in the glasses, the relative concentration of such structurally different configurations of 31P will change. For Ga$_x$Al$_{1-x}$PO$_4$ glass, the 31P NMR are complex due to the superposition of five individual patterns whose relative intensity is found to vary systematically with variation of Al/Ga ratio. In crystalline phosphates, the 31P chemical shift increases by ≈4 ppm for each replacement of Al$^{3+}$ by Ga$^{3+}$. The line widths (Γ) for glasses in general tend to be broader than those in crystals due to more asymmetric in amorphous environments [4]. So in the spectra (Fig. S4), the single peaks could not be distinguished separately.

As illustrated from Table S2, the compositional dependence of the structural speciation can be clearly viewed in term of a competition of gallium and aluminum species for the phosphorus. The effect of moving the main peak upfield was found to significantly depend on an increase of Ga contents in theses phosphate glasses. As Ga contents increases from 5% to 20%, the 31P chemical shift moves to -22.7 ppm. It indicates that one aluminum sites was replaced by gallium constantly. These P(OAl)$_4$ and PO$_4$(1Ga3Al) units become the overwhelming majority of phosphorus sites. The structure which is based on alternating of the two units is similar with the gallium-free “ideal” AlPO$_4$ network. This is the reason that the mesoporous structure remains intact. Whereas 30% difference of gallium contents between Ga$_{0.2}$Al$_{0.8}$PO$_4$ and Ga$_{0.5}$Al$_{0.5}$PO$_4$ shows a little difference (0.5 ppm) in their chemical shifts (δ). The deconvoluted 31P spectra of Ga$_{0.5}$Al$_{0.5}$PO$_4$ reveals the fact that P(OAl)$_4$ and PO$_4$(1Ga3Al) units keeps as major species even the amount of gallium adds to 50%. It can be clearly seen that there is some competition between the two cations but that the tendency of the Al$^{3+}$ to occupy the next nearest sites of P$^{5+}$ is a bit larger than that of the Ga$^{3+}$. It gives the clear evidence that the phase separation occurs as the amount of gallium increases. The fact that the glasses turns out to be opaque when gallium add up to 30% ascribed to macroscopic phase separation. The surface areas significantly decreases as the gallium reaches 20% percent can be corresponded to the phase separation which destroys the “ideal” AlPO$_4$ three-dimensional network. The 27Al NMR spectrum (Fig. S4 left) indicates the formation of additional five- and six-coordinate aluminum species as Ga contents increases. The excess of phosphorus due to the larger tendency of Al$^{3+}$ to occupy the next nearest sites of P$^{5+}$ is used for the conversion of additional aluminum into Al(OP)$_5$ and Al(OP)$_6$ units; furthermore, the same chemical shift of four-, five- and six- coordinated (Al(IV), Al(V) and Al(VI)) aluminum compared
with \(\text{Al}_2\text{O}_3\text{-P}_2\text{O}_5 \) binary system confirm that the Al-O-Ga linkages are largely absent in these glasses [5].

The leaching behavior of Ga_{0.1}Al_{0.9}PO_4 Glass

The leaching test was carried out by using the ASTM standard MCC-1 leaching method [6]. The standard pH buffer solutions were employed as fixed pH leachant, the ratio of glass surface area to leachant volume (SA/V) was 2000 \(\text{m}^{-1} \), and the leaching temperature was at room temperature. Test duration is 7 d which is longer than the saturated absorption time of heavy metal ions on GAPs. The leachate was analyzed by using inductively coupled plasma spectrometry (ICP) for the three main glass elements: Al, Ga, P. The mass of glass specimen was measured before and after leaching; then the total mass loss \(ML \) and the element leached fraction \(LF_i \) were calculated as follows:

\[
ML = (m_0 - m_1)/(SA)
\]

\[
LF_i = (C_i \times V)/(m_0 \times f_i)
\]

Where \(m_0(g) \) and \(m_1(g) \) are mass of original unleached sample and sample after leaching, respectively; \(C_i(g \text{ m}^{-3}) \) indicated the concentration of element \(i \) in leachate; \(f_i \) is the mass fraction of element \(i \) in the unleached sample.

The total mass loss and the leached fraction of three ions depicted in Fig. S5 indicate that the GAPs are the most durable from pH 3 to pH 9. The rate of leached fraction increases dramatically above pH 9 and below pH 3. The variations of leaching behavior always seem as a function of its composition. The chemical durability of phosphate glasses would be improved by introducing a number of other glass formers and modifiers such as Al\(_2\)O\(_3\), MoO\(_3\), Ga\(_2\)O\(_3\), In\(_2\)O\(_3\), Sb\(_2\)O\(_3\) [7]. For example, it was well known that the Al\(_2\)O\(_3\) affects the phosphate glass properties in ways that imply an increase in the extent of structural polymerization, inhibiting hydration reactions [8]. It should be noticed that the leached fraction of GAPs in a wide pH range from 3 to 9 is rather low (<10%) which is attributed to the high Al\(_2\)O\(_3\) and Ga\(_2\)O\(_3\) content. The high chemical durability of GAPs benefits its application in harsh environment.
Fig. S6 (a) Adsorption–desorption isotherms (b) Pore size distribution of Ga$_{0.1}$Al$_{0.9}$PO$_4$ mesoporous glass before and after Pb adsorbed.

Fig. S7 SEM of (a) as-prepared and (b) Pb-adsorbed Ga$_{0.1}$Al$_{0.9}$PO$_4$ mesoporous glass

Reference: