Electronic Supplementary Information

Green synthesis, optical and magnetic properties of a MnII metal-organic framework (MOF) that exhibits high heat of H\textsubscript{2} adsorption

Sandeep Singh Dhankhar and C. M. Nagaraja*

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.

Tel: 91- 1881-242229.

Email: cmnraja@iitrpr.ac.in

Scheme S1. Coordination modes of [Mn\textsubscript{3}(NDC)\textsubscript{3}(DMA)\textsubscript{4}]\textsubscript{n}

Fig. S1 PXRD patterns of compound 1 prepared by different routes (a) pattern calculated from the single crystal X-ray data (b) for as-synthesized sample by solvothermal route (c) for sample obtained by solvent assisted mechanochemical route (d) for sample obtained by sonochemical route.

Fig. S2 FT-IR spectrum of 1 synthesized by solvothermal route.

Fig. S3 FT-IR spectrum of 1 synthesized by sonochemical route.

Fig. S4 FT-IR spectrum of 1 synthesized by solvent assisted mechanochemical route.

Fig. S5 PXRD patterns of compound 1 (a) pattern calculated from the single crystal X-ray data (b) for as-synthesized sample by solvothermal route (c) for the sample heated at 250°C for 20h (d) for the degassed/desolvated sample (after adsorption studies) soaked in DMA for 3 days at room temperature.

Fig. S6 Nitrogen adsorption-desorption isotherms of 1’ at 77K.

Fig. S7 Hydrogen adsorption isotherm for 1’ at 77K. The solid line shows the best fit to the data using Langmuir- Freundlich Equation.

Fig. S8 Hydrogen adsorption isotherm for 1’ at 87K. The solid line shows the best fit to the data using Langmuir- Freundlich Equation.

Fig. S9 Enthalpy of hydrogen adsorption for 1’ using Clausius-Clapeyron Equation calculations.
Fig. S10 Carbon dioxide adsorption isotherm for 1’ at 273K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Fig. S11 Carbon dioxide adsorption isotherm for 1’ at 298K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Fig. S12 Enthalpy of carbon dioxide adsorption for 1’ using Clausius-Clapeyron Equation calculations.

Fig. S13 Temperature dependence of $\chi_{M^{-1}}$ for 1 at 100 Oe.

Fig. S14 M vs H curve in 1 recorded at 2 K.

Fig. S15 Tauc plot for band gap calculation of 1 synthesized by solvothermal route.

Fig. S16 Tauc plot for band gap calculation of 1 synthesized by sonochemical route.

Fig. S17 Tauc plot for band gap calculation of 1 synthesized by mechanochemical route.

Scheme S1. Coordination modes of [Mn$_3$(NDC)$_3$(DMA)$_4$]$_n$
Fig. S1 PXRD patterns of compound 1 prepared by different routes (a) pattern calculated from the single crystal X-ray data (b) for as-synthesized sample by solvothermal route (c) for sample obtained by solvent assisted mechanochemical route (d) for sample obtained by sonochemical route.

Fig. S2 FT-IR spectrum of 1 synthesized by solvothermal route.
Fig. S3 FT-IR spectrum of 1 synthesized by sonochemical route.

Fig. S4 FT-IR spectrum of 1 synthesized by solvent assisted mechanochemical route.
Fig. S5 PXRD patterns of compound 1 (a) pattern calculated from the single crystal X-ray data (b) for as-synthesized sample by solvothermal route (c) for the sample heated at 250°C for 20h (d) for the degassed/desolvated sample (after adsorption studies) soaked in DMA for 3 days at room temperature.
Fig. S6 Nitrogen adsorption-desorption isotherms of 1’ at 77K.
Analysis of Gas adsorption Isotherms

Clausius-Clapeyron Equation\(^{1,2}\) was used to calculate the enthalpies of hydrogen adsorption. By using Langmuir Freundlich equation\(^3\) an accurate fit was retrieved which gives a precise prediction of hydrogen adsorbed at saturation. A modification of Clausius-Clapeyron equation is used for calculations.

\[
\ln\left(\frac{P_1}{P_2}\right) = \Delta H_{ads} \times \frac{T_2-T_1}{R \times T_1 T_2} \quad \text{(i)}
\]

where, \(P_1\) and \(P_2\) = pressures for isotherm at 77K and 87K respectively.

\(T_1\) and \(T_2\) = temperatures for isotherm at 77K and 87K respectively.

\(\Delta H_{ads}\) = Enthalpy of adsorption.

\(R\) = Universal gas constant = 8.314 J/K/mol.

Pressure is a function of amount of gas adsorbed which was determined by using the Langmuir-Freundlich fit.

\[
\frac{Q}{Q_m} = \frac{B \times P^{(1/t)}}{1 + (B \times P^{(1/t)})} \quad \text{(ii)}
\]

where, \(Q\) = moles of gas adsorbed.

\(Q_m\) = moles of gas adsorbed at saturation.

\(B\) and \(t\) = constants.

\(P\) = Pressure.

By rearranging equation (ii) we get equation (iii)

\[
P = \left[\frac{Q/Q_m}{B - (B \times Q/Q_m)}\right]^t \quad \text{(iii)}
\]

Substituting equation (iii) into equation (i) we get
\[
\Delta H_{sd} = \frac{R \times T_1 \times T_2}{T_2 - T_1} \left[\frac{Q/Q_{m1}}{B - (B \times Q/Q_{m1})} \right]^{1/2}
\]

---(iv)

In equation (iv), subscript 1 and 2 are representing data corresponding to 77K and 87K respectively in case of hydrogen gas and 273K and 298K in case of carbon dioxide gas.

Fig. S7 Hydrogen adsorption isotherm for 1’ at 77K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.
Fig. S8 Hydrogen adsorption isotherm for 1’ at 87K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Fig. S9 Enthalpy of hydrogen adsorption for 1’ using Clausius-Clapeyron Equation calculations.
Fig. S10 Carbon dioxide adsorption isotherm for 1' at 273K. The solid line shows the best fit to the data using Langmuir- Freundlich Equation.

Fig. S11 Carbon dioxide adsorption isotherm for 1' at 298K. The solid line shows the best fit to the data using Langmuir- Freundlich Equation.
Fig. S12 Enthalpy of carbon dioxide adsorption for 1' using Clausius-Clapeyron Equation calculations.

Fig. S13 Temperature dependence of χ_M^{-1} for 1 at 100 Oe.
Fig. S14 M vs H curve in 1 recorded at 2 K.

Fig. S15 Tauc plot for band gap calculation of 1 synthesized by solvothermal route.
Fig. S16 Tauc plot for band gap calculation of 1 synthesized by sonochemical route.

Fig. S17 Tauc plot for band gap calculation of 1 synthesized by mechanochemical route.
References