Supporting information

Concentration-Induced Structural Transition of Block Polymer Self-assembled on Nanoparticle Surface: Computer Simulation

Wenjun Xiang, a Zhaojun Zhu, a Xianyu Song b,*, Cheng Zhong, b Chengjie Wang, c Yongzhang Ma d

a School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, China
b Department of mechanical and electrical engineering, Dazhou Vocational And Technical College, Dazhou, Sichuan 635000, China
c School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
d Sichuan Province Academy of Industrial Environmental Monitoring, Chengdu 610500, China

*To whom correspondence should be addressed:
E-mail: xianyus008@163.com
Telephone number: +86 02883037346
Fax number: +86 02883037346
Present Addresses: School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
Figure S1. Density distribution of F127 (black), PO block (red) and EO block (blue) absorbed on nanoparticle surfaces for (a-c) AR model (attractive-repulsive), (d-f) AA model (almost attractive-almost repulsive) and (g-i) IA model (intermediate-almost intermediate) hydrophobic degree. In this case, (a, d, g) 5%, (b, e, h) 10%, (c, f, i) 15% concentration, respectively.
Figure S2. The radial distribution functions $g(r)$ for different concentrations of F127 considered in this work for (a-c) AR model (attractive-repulsive), (d-f) AA model (almost attractive-almost repulsive) and (g-i) IA model (intermediate-almost intermediate) hydrophobic degree. In this case, (a, d, g) 5%, (b, e, h) 10%, (c, f, i) 15% concentration, respectively.