Supporting information

Ag-doped Nano Magnetic γ-Fe$_2$O$_3$@DA Core–Shell Hollow Spheres: an efficient and recoverable heterogeneous catalyst for A^3, K^2 Coupling Reactions and [2+3] cycloaddition

A. Elhampour*,a, M. Malmir*,b E. Kowsari, F. Boorboor ajdari and F. Nemati

*a Department of Chemistry, Semnan University, Semnan, Iran, Zip Code: 35131-19111, E-mail: Elhampour_ali@yahoo.com

b Department of Chemistry, Amirkabir University of Technology, Hafez Avenue, No. 424, Tehran, Iran, E-mail address: Masi.malmir@yahoo.com
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General information</td>
<td>S3</td>
</tr>
<tr>
<td>1.1. General details</td>
<td>S3</td>
</tr>
<tr>
<td>2. Characterizations of Catalyst</td>
<td>S4</td>
</tr>
<tr>
<td>2.1. FT-IR analysis</td>
<td>S4</td>
</tr>
<tr>
<td>2.2. XRD patterns</td>
<td>S5</td>
</tr>
<tr>
<td>2.3. TGA analysis</td>
<td>S5</td>
</tr>
<tr>
<td>2.4. VSM Curves</td>
<td>S6</td>
</tr>
<tr>
<td>2.5. FEG-SEM-EDS analysis</td>
<td>S6</td>
</tr>
<tr>
<td>2.6. TEM image</td>
<td>S7</td>
</tr>
<tr>
<td>3. Spectral data for selected compounds</td>
<td>S8-S15</td>
</tr>
<tr>
<td>3.1. Copies of 1H and 13C NMR for selected products</td>
<td>S16-S55</td>
</tr>
<tr>
<td>4. Reference</td>
<td>S56</td>
</tr>
</tbody>
</table>
1. General information

The process for the preparation of the magnetic \(\text{Fe}_2\text{O}_3@\text{DA}/\text{Ag} \) hollow sphere catalyst is schematically described in scheme 1. The nano magnetic \(\text{Fe}_2\text{O}_3@\text{DA}/\text{Ag} \) hollow sphere was prepared from commercially inexpensive available materials and fully characterized using, the corresponding data, provided by FT-IR, FE-SEM, TEM, XRD, TGA, and VSM techniques.

1.1. General details

All chemicals, including \(\text{FeCl}_3\cdot6\text{H}_2\text{O} \), trisodium citrate dihydrate, sodium acetate trihydrate, ethanol, ethylene glycol (EG), PVP, urea, dopamine, \(\text{AgNO}_3 \) and \(\text{NH}_3\cdot\text{H}_2\text{O} \), were analytical grade reagents, purchased from Sigma-Aldrich, and used without further purification. The progress of reaction was monitored by TLC on commercial aluminum-backed plates of silica gel 60 F254, visualized, using ultraviolet light. Melting points were determined in open capillaries using an Electrothermal 9100 without further corrections. \(^1\text{H}\) NMR and \(^{13}\text{C}\) NMR spectra were recorded using a Bruker DRX-400 spectrometer at 400 and 100 MHz respectively. magnetic-\(\text{Fe}_2\text{O}_3@\text{DA}/\text{Ag} \) hollow sphere was characterized by; FT-IR spectra were obtained with potassium bromide pellets in the range of 400–4000 cm\(^{-1}\) using a Shimadzu 8400s spectrometer; X-ray diffraction (XRD) was detected by Philips using Cu-Ka radiation of wavelength 1.54Å; Scanning electron Microscopy, FE-SEM-EDX, analysis was performed using Tescanvega II XMU Digital Scanning Microscope. Samples were coated with gold at 10 mA for 2 min prior to analysis; the magnetic properties were characterized using a vibrating sample magnetometer (VSM, Lakeshore7407) at room temperature. Thermo-gravimetric
analyses (TGA) were analyzed with a LINSEIS modele STS PT 16000 thermal analyzer under air atmosphere at a heating rate of 5 °C min\(^{-1}\).

2. Characterizations of Catalyst

2.1. FT-IR analysis

![FT-IR spectra](image)

Figure 1. The FT-IR spectra of (a) h-Fe\(_2\)O\(_3\), (b) h-Fe\(_2\)O\(_3\)@DA and (c) h-Fe\(_2\)O\(_3\)@DA/Ag.
2.2. X-ray diffraction spectra

Figure 2. XRD pattern of (a) h-Fe$_2$O$_3$, (b) h-Fe$_2$O$_3$@DA and (c) h-Fe$_2$O$_3$@DA/Ag

2.3. X-ray diffraction spectra

Figure 3. TGA analysis of (a) h-Fe$_2$O$_3$ and (b) h-Fe$_2$O$_3$@DA/Ag.
2.4. VSM analysis

![Magnetization curves](image)

Figure 4. The magnetization curves of (a) h-Fe$_2$O$_3$, (b) h-Fe$_2$O$_3$@DA and (c) h-Fe$_2$O$_3$@DA/Ag.

2.5. FE-SEM-EDS analysis

![SEM-EDS analysis](image)

Figure 5. The FEG-SEM-EDS analysis of (a,b) h-Fe$_2$O$_3$, (c,d) h-Fe$_2$O$_3$@DA and (e,f) h-Fe$_2$O$_3$@DA/Ag.
2.6. TEM image

Figure 6. The TEM image of h-Fe$_2$O$_3$@DA/Ag.
3. Spectral data for selected compounds

1-(1,3-diphenylprop-2-ynyl)piperidine (table 1, 5a): Pale yellow oily liquid; 1H NMR (400 MHz, CDCl$_3$, ppm) δ 1.45-1.49 (m, 2H), 1.58-1.65 (m, 4H), 2.59 (t, 4H), 4.81 (s, 1H), 7.31-7.40 (m, 6H), 7.53-7.55 (m, 2H), 7.65-67 (d, J=7.6 Hz, 2H).

1-(3-phenyl-1-(thiophen-2-yl)prop-2-ynyl)piperidine (table 1, 5g): Yellow solid; mp 50-51 ºC (Lit.1 52-53 ºC); 1H NMR (400 MHz, CDCl$_3$, ppm) δ 1.48-1.52 (m, 2H), 1.63-1.70 (m, 4H), 2.62-2.71 (m, 4H), 5.03 (s, 1H), 7.00 (dd, J1=J2=3.6 Hz, 1H), 7.25-7.30 (m, 1H), 7.31 (d, J=4.4 Hz, 2H). 7.36-7.38 (m, 3H), 7.54-7.57 (m, 2H); 13C NMR (100 MHz, CDCl$_3$, ppm) δ 24.4, 26.1, 50.6, 58.2, 85.3, 86.9, 123, 125.3, 125.8, 126.2, 128.2, 128.3, 131.8, 144.
1-(3-phenyl-1-(4-(3-phenyl-1-(piperidin-1-yl)prop-2-ynyl)phenyl)prop-2-ynyl)piperidine (table 1, 5h): White solid; mp 157-159 °C (Lit.1 158-160 °C); 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm) \(\delta\) 1.47 (m, 2H), 1.59-1.63 (m, 4H), 2.59 (m, 4H), 4.81 (s, 1H), 7.33-7.35 (m, 3H), 7.52-7.55 (m, 2H), 7.63 (s, 2H).

1-(1-(naphthalen-3-yl)-3-phenylprop-2-ynyl)piperidine (table 1, 5i): Yellow oil; 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm): \(\delta\) 1.47-1.51 (m, 2H), 1.60-1.67 (m, 4H), 2.64 (t, 4H), 4.97 (s, 1H), 7.36-7.40 (m, 3H), 7.48-7.52 (m, 2H), 7.58-7.61 (m, 2H), 7.79 (dd, \(J^1=J^2=8.4\) Hz, 1H), 7.85-7.91 (m, 3H), 8.11 (s, 1H); 13C NMR (100 MHz, CDCl\textsubscript{3}, ppm) d 24.4, 26.2, 50.8, 62.5, 86, 88.1, 123.3, 125.8, 125.9, 126.7, 127.2, 127.5, 127.7, 128.1, 128.12, 131.8, 132.9, 133.1, 136.3.
N,N-diethyl-1,3-diphenylprop-2-yn-1-amine (table 1, 5r): Pale yellow oily liquid;
1H NMR (400 MHz, CDCl$_3$, ppm) δ 1.04 (m, 6H), 2.36-2.62 (m, 4H), 5.19 (s, 1H), 7.15-7.27 (m, 4H), 7.29-7.38 (m, 3H), 7.39-7.41 (m, 2H).

4-(3-phenylprop-2-ynyl)morpholine (table 1, 6c): yellow oil; 1H NMR (400 MHz, CDCl$_3$, ppm) δ 2.64-2.67 (m, 6H), 3.52 (s, 3H), 3.69-3.71 (m, 1H), 3.77-3.79 (m, 6H), 7.28-7.31 (m, 4H), 7.43-7.46 (m, 2H).

1-(1-cyclohexyl-3-phenylprop-2-ynyl)pyrrolidine (table 1, 6i): Colorless liquid; 1H NMR (400 MHz, CDCl$_3$, ppm) δ 1.05-1.36 (m, 5H), 1.56-1.63 (m, 2H), 1.75-1.79 (m, 6H), 1.82-2.10 (m, 4H), 2.5-2.98 (m, 4H), 3.36-3.38 (d, J = 7.6 Hz, 1H), 7.14-7.33 (m,
3H), 7.50-7.63 (m, 2H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ 24.9, 26.9, 27.1, 28.3, 32.7, 33, 42.9, 51.1, 61.1, 86.1, 88.9, 125.9, 128.9, 129.8, 132.6.

4-(1-phenylhex-1-yn-3-yl)morpholine (Table 1, 6m): Yellow oil; 1H NMR (400 MHz, DMSO-d_6, ppm) δ 0.97 (m, 3H), 1.45-1.75 (m, 4H), 2.67–2.70 (m, 2H), 2.79–2.83 (m, 2H), 3.82-4.13 (m, 1H), 4.15-4.17 (m, 4H), 7.46–7.50 (m, 3H), 7.62–7.64 (m, 2H).

1-(1-(2-p-tolylethynyl)cyclohexyl)piperidine (Table 2, 8e): Yellow oil; 1H NMR (400 MHz, CDCl$_3$, ppm) δ 1.39-1.93 (m, 16H), 2.17-2.20 (m, 2H), 2.53 (s, 3H), 2.73-2.83 (m, 2H), 7.26-7.27 (m, 3H), 7.46-7.48 (m, 2H); 13C NMR (100 MHz, CDCl$_3$, ppm) δ 21.32, 23.4, 24.4, 25, 26.7, 37.6, 47.9, 58.8, 85.4, 92.1, 123, 127.6, 128.3, 133.
4-(1-(2-phenylethynyl)cyclohexyl)morpholine (Table 2, 8f): Pale yellow oily liquid;

1H NMR (400 MHz, CDCl$_3$, ppm) δ 1.28-1.30 (m, 1H), 1.52 (m, 2H), 1.63-1.67 (m, 3H), 1.73 (br.s, 2H), 2.03-2.05 (m, 2H), 2.74 (br.s, 4H), 3.78 (br.s, 4H), 7.27 (m, 3H), 7.44-7.45 (m, 2H), 13C NMR (100 MHz, CDCl$_3$, ppm) δ 22.7, 25.7, 35.4, 46.6, 58.8, 67.4, 86.4, 89.8, 123.4, 127.7, 128.1, 131.7.

![Image of 4-(1-(2-phenylethynyl)cyclohexyl)morpholine](image1)

4-(1-(4-fluorophenyl)ethynyl)cyclohexyl)morpholine (Table 2, 8i): Yellow oil; 1H NMR (400 MHz, DMSO-$_d_6$, ppm) δ 1.26-1.34 (m, 1H), 1.57-1.62 (m, 2H), 1.69-1.78 (m, 3H), 1.80-1.86 (m, 2H), 2.00-2.02 (m, 2H), 2.78 (s, 4H), 3.70 (br.t, J = 4.2 Hz, 4H), 6.97-7.00 (t, J = 8.6 Hz, 2H), 7.32-7.40 (m, 2H).

![Image of 4-(1-(4-fluorophenyl)ethynyl)cyclohexyl)morpholine](image2)

5-Phenyl-1H-tetrazole (Table 3, 9a): White solid; mp 213–215 °C (Lit.2 214–215 °C); 1H NMR (400 MHz, DMSO-$_d_6$, ppm) δ 7.68 (s, 3H, Ph), 7.92 (s, 2H, Ph); 13C NMR (100 MHz, DMSO-$_d_6$, ppm) δ 126.6, 128.6, 130.3, 134.6, 155.

![Image of 5-Phenyl-1H-tetrazole](image3)
5-(4-Nitrophenyl)-1H-tetrazole (Table 3, 9b): Yellow solid; mp 218–219 °C (Lit.2 220-222 °C); 1H NMR (400 MHz, DMSO-\textit{d}_{6}, ppm) δ 8.30 (d, 2H, \textit{J} 8.4, Ph), 8.39 (d, 2H, \textit{J} 8.8, Ar-H); 13C NMR (100 MHz, DMSO-\textit{d}_{6}, ppm) δ 127.6, 129.1, 131, 149.5.

\[\begin{array}{c}
\text{N} \\
\text{N} \\
\text{N} \\
\text{N}
\end{array} \]

5-(4-Methylphenyl)-1H-tetrazole (Table 3, 9c): White solid; mp 249-251 °C (Lit.2 247-249 °C); 1H NMR (250 MHz, DMSO-\textit{d}_{6}, ppm) δ 2.35 (s, 3H, CH\textsubscript{3}), 7.37 (d, 2H, \textit{J} 7.6 Hz, Ph), 7.90 (d, 2H, \textit{J} 7.5 Hz, Ph).

\[\begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{Cl}
\end{array} \]

5-(3-Chlorophenyl)-1H-tetrazole (Table 3, 9g): White solid; mp 138-140 °C (Lit.3 137-139 °C); 1H NMR (250 MHz, DMSO-\textit{d}_{6}, ppm) δ 7.55 (m, 2H, Ph), 7.96 (d, 1H, \textit{J} 7.6, Ph), 7.99, (s, 1H); 13C NMR (62.9 MHz, DMSO-\textit{d}_{6}, ppm) δ 125.4, 126.2, 126.4, 130.7, 131.1, 133.9, 154.6.

\[\begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{Cl}
\end{array} \]

5-(4-Chlorophenyl)-1H-tetrazole (Table 3, 9h): White solid; mp 251-253 °C (Lit.2 251-252 °C); 1H NMR (400 MHz, DMSO-\textit{d}_{6}, ppm) δ 7.61 (d, 2H, \textit{J} 8.4, Ph), 8.09 (d, 2H, \textit{J} 8.8, Ph).
5-(4-Hydroxyphenyl)-1H-tetrazole (Table 3, 9j): White solid; mp 235 °C (Lit.\(^2\) 233-234 °C); \(^1\)H NMR (400 MHz, DMSO-\(d_6\), ppm) \(\delta\) 6.91 (d, 2H, \(J\) 8.4, Ph), 7.58 (d, 2H, \(J\) 8.4, Ph), 10.11 (s broad, OH); \(^13\)C NMR (100 MHz, DMSO-\(d_6\), ppm) \(\delta\) 116.1, 117.4, 128.8, 153.2, 159.8.

4-(1H-tetrazol-5-yl)-benzonitrile (Table 3, 9k): White solid; mp 257-259 °C (Lit.\(^4\) 258-260 °C); \(^1\)H NMR (250 MHz, DMSO-\(d_6\), ppm) \(\delta\) 8.06 (d, 2H, \(J\) 7.1, Ph), 8.19 (d, 2H, \(J\) 8.6, Ar-H); \(^13\)C NMR (62.9 MHz, DMSO-\(d_6\), ppm) \(\delta\) 113.3, 118.1, 127.6, 128.7, 133.1, 155.2, 162.2.

2-(1H-tetrazol-5-yl)pyridine (Table 3, 9l): White solid; mp 210-213 °C (Lit.\(^5\) 211-212 °C); \(^1\)H NMR (400 MHz, DMSO-\(d_6\), ppm) \(\delta\) 7.75 (s, 1H, Ph), 8.07 (s, 1H, Ph), 8.20 (d, 1H, \(J\) 8.4 Ph), 8.63 (s, 1H).
4-(1H-tetrazol-5-yl)pyridine (Table 3, 9m): White solid; mp 256-258 °C (Lit.\(^6\) 256-258 °C); \(^1\)H NMR (250 MHz, DMSO-\(d_6\), ppm) \(\delta\) 8.10 (d, 2H, \(J\) 6.0, Ph), 8.77 (d, 2H, \(J\) 6.5, Ph); \(^{13}\)C NMR (62.9 MHz, DMSO-\(d_6\), ppm) \(\delta\) 120.9, 121.3, 133.8, 149.9, 165.7.
3.1. Copies of 1H and 13C NMR for selected products

Figure 7. 1H NMR spectrum of (table 1, 5a)
Figure 8. 1H NMR, Expand spectrum of (table 1, 5a)
Figure 9. 1H NMR, spectrum of (table 1, 5g)
Figure 10 1H NMR, Expand spectrum of (table 1, 5g)
Figure 11 \(^{13}\text{C}\) NMR, Expand spectrum of (table 1, 5g)
Figure 12 ^{13}C NMR, Expand spectrum of (table 1, 5g)
Figure 13 1H NMR, spectrum of (table 1, 5h)
Figure 14: ¹H NMR, Expand spectrum of (table 1, 5h)
Figure 15 1H NMR, spectrum of (table 1, 5i)
Figure 16: H NMR, Expand spectrum of (table 1, 5i)
Figure 17 13C NMR, spectrum of (table 1, 5i)
Figure 18 13C NMR, Expand spectrum of (table 1, 5i)
Figure 19 ¹H NMR, spectrum of (table 1, 5r)
Figure 20 1H NMR, spectrum of (table 1, 6c)
Figure 21 1H NMR, Expand spectrum of (table 1, 6c)
Figure 22 ¹H NMR, spectrum of (table 1, 6i)
Figure 23 13C NMR, spectrum of (table 1, 6i)
Figure 24: 1H NMR, spectrum of (table 1, 6m)
Figure 25 1H NMR, spectrum of (table 2, 8e)
Figure 26 1H NMR, Expand spectrum of (table 2, 8e)
Figure 27 13C NMR, spectrum of (table 2, 8e)
Figure 28 1H NMR, spectrum of (table 2, 8f)
Figure 29 13C NMR, spectrum of (table 2, 8f)
Figure 30 1H NMR spectrum of (table 2, 8i)
Figure 31 1H NMR spectrum of (table 3, 9a)
Figure 32 13C NMR spectrum of (table 3, 9a)
Figure 33 \(^1\)H NMR spectrum of compound (table 3, 9b)
Figure 34 13C NMR spectrum of (table 3, 9b)
Figure 35 1H NMR spectrum of (table 3, 9c)
Figure 36 ^{13}C NMR spectrum of (table 3, 9c)
Figure 37 1H NMR spectrum of (table 3, 9g)
Figure 38 1H NMR spectrum of (table 3, 9h)
Figure 39 1H NMR spectrum of (table 3, 9j)
Figure 40 13C NMR spectrum of (table 3, 9j)
Figure 41 1H NMR spectrum of (table 3, 9k)
Figure 42 1H NMR expand spectrum of (table 3, 9k)
Figure 43 13C NMR spectrum of (table 3, 9k)
Figure 44 1H NMR spectrum of (table 3, 91)
Figure 45 1H NMR spectrum of (table 3, 9m)
Figure 46 13C NMR spectrum of (table 3, 9m)
4. References

