Supporting Information To:

A Turn-On Dual Emissive Nucleobase Sensitive to Mismatches and Duplex Conformational Changes

Krishna Gavvala,^{ar} Nicolas P. F. Barthes,^{br} Dominique Bonhomme,^b Anne Sophie Dabert-Gay,^c Delphine Debayle,^c Benoît Y. Michel,^b Alain Burger^{*b}, Yves Mély^{*a}

a) Laboratoire de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France

b) Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, Parc Valrose, 06108 Nice Cedex 2, France.

c) Institut de Pharmacologie Moléculaire et Cellulaire, UMR 6097, Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France.

Corresponding authors: alain.<u>burger@unice.fr; yves.mely@unistra.fr</u>

Table of contents

Experimental Section	Pages
1. Synthetic Procedures	3
2. ODN synthesis, purification, HPLC and MS	5
3. Spectroscopic characterization	6
3.1 Preparation of the samples	6
3.2 Denaturation studies	6
3.3 Circular Dichroism	10
3.4 Absorption and Fluorescence spectra	11
3.5 Time resolved fluorescence measurements	14
3.6 pH dependent absorption and fluorescence measurements	15
4. NMR spectra of compounds	17

Experimental section

<u>1. Synthetic Procedures</u>

General methods:

All reactions involving water-sensitive reagents were performed in oven-dried glassware under argon using dry solvents. The synthetic intermediates were co-evaporated twice with toluene beforehand and dried in vacuo before use. All chemical reagents were obtained from commercial sources and were used as supplied. Anhydrous solvents were obtained according to standard procedures.[1] The reactions were monitored by thin-layer chromatography (TLC, Merck silica gel 60 F254 plates) and visualized both by UV radiation (254 & 365 nm) and by spraying with vanillin in ethanol and then sulfuric acid (5 %) in ethanol followed by a subsequent warming with a heat gun. Column chromatography [2] was performed with flash silica gel (40663 mm). All NMR spectra (¹H, ¹³C, ²D) were recorded on 200 or 500 Bruker Advance Spectrometers (200 or 500 MHz). ¹H NMR (200 and 500 MHz), ¹³C NMR (50 and 125 MHz, recorded with complete proton decoupling) spectra were obtained with samples dissolved in $CDCl_3$, CD_3OD , or $DMSO-d^6$, with the solvent signals used as internal references: 7.26 ppm for CHCl₃, 3.31 ppm for CD₂HOD, 2.50 ppm for (CD₃)(CD₂H)S(O) for ¹H NMR experiments, and 77.0 ppm for CDCl₃, 49.0 ppm for CD₃OD, 39.4 ppm for (CD₃)₂S(O) for ¹³C NMR experiments.[3] Chemical shifts (δ) are given in ppm to the nearest 0.01 (1H) or 0.1 ppm (13 C). The coupling constants (J) are given in Hertz (Hz). The signals are reported as follows: (s=singlet, d=doublet, t=triplet, m=multiplet, br=broad). Assignments of 1 H and 13 C NMR signals were achieved with the help of D/H exchange, COSY, DEPT, APT, HMQC, HSQC, HMBC experiments. Regular mass spectra (MS) were recorded on an Esquire 3000 Plus apparatus with ESI in both positive and negative mode. High-resolution mass spectrometry was conducted with a FINIGAN MAT 95 spectrometer with EI or ESI ionization techniques. Supplementary data associated with this article: the experimental protocols for the synthesis of intermediates 2-7 and 10-11, the ¹H NMR, ¹³C NMR and (in part) ¹Hó¹³C COSY, ¹Hó¹³C HMQC and ¹Hó¹³C HMBC spectra of all compounds. Systematic nomenclatures are used below for the assignments of the flavone and nucleoside.

1.1 Preparation of the amidite 10

<u>Retrosynthesis</u>: The emissive amidite 6 was engineered through a convergent strategy involving on one hand for the 3HC preparation, a Claisen-Schmidt condensation followed by an Algar-Flynn-Oyamada reaction and, on the other hand for the final assembly, two Sonogashira cross-couplings.

Synthesis: The 3HC-coupling partner, 3-Benzyloxycarbonyloxy-2-(5-bromofur-2-yl)-chromen-4-one **4** was synthesized according to our robust procedure.[4]

Scheme S1. Preparation of the 3HC-coupling partner 10.

The 6-step convergent synthesis of the target amidite **10** required for the preparation of labelled ODNs was adapted and optimized from our reported protocol.[5] 5-iododeoxyuridine **5** was engaged in a transient protection to provide the desired 3-imido-protected derivative **6**. Masking the *N*-3 position is a prerequisite to avoid 5-endo-dig cyclization as a side reaction during the final assembly of the fluorophore and the alkynyl nucleoside. After tritylation of the 5ø-OH group leading to **7**, trimethylsilylacetylene was efficiently coupled to the 5-iodouracil moiety. Tetraethylammonium fluoride was employed for the chemoselective removal of the silyl group delivering **8** in appreciable yields. The furylchromone **4**, prepared from a gram-scalable procedure, was then connected on the 5-ethynyluridine **8** through a convenient Sonogashira coupling. Phosphitylation of **9** under classical conditions yielded the amidite **10** which allowed the preparation of 15-mer labelled oligonucleotides via solid-phase synthesis. HPLC, UV and MS analysis ascertained the purity and integrity of the synthesized ODNs.

Scheme S2. Synthetic access to the fluorescent amidite 10.

1.2 Protocols

NMR characterizations and synthetic procedures leading to derivatives **5**, **6**, **7** and **8** were previously described in a similar approach.[5]

5'-O-(4,4'-Dimethoxytrityl)-3-N-(4-methylbenzoyl)-5-(5-(3-

Benzylcarbonate-4-oxo-chromen-2-yl)fur-2-yl)ethynyl-2'-deoxyuridine (9): To a stirred solution of **8** (300 mg, 0,45 mmol, previously azeotropically coevaporated with dry toluene) and **4** (269 mg, 0.58 mmol, 1.3 eq) in THF (10 mL) under argon, were sequentially added triethylamine (311 μ L, 2.23 mmol, 5 eq), and CuI (7 mol %, 0.03 mmol, 6 mg,)/PdCl₂(PPh₃)₂ (7 mol %, 0.03 mmol, 22 mg) all together. The reaction mixture was warmed up to 60 °C for 2 h. The volatiles were removed *in vacuo* and the residue was purified by flash chromatography on silica gel eluted with toluene/EtOAc (93:7 3:2, v/v) to provide the desired compound **9** as a yellow foam (307 mg, 67 %). C₆₁H₄₈N₂O₁₄ (1033.05). *R_f*=0.41 (toluene/EtOAc=7:3). ¹H-NMR (CDCl₃, 200 MHz): δ =8.41

(1H, s, H6), 8.23 (1H, dd, ${}^{3}J=8.3$ Hz and ${}^{4}J=1.6$ Hz, H5), 7.83 (2H, d, ${}^{3}J=8.2$ Hz, *o*-*H*-Tol), 7.67 (1H, ddd, ${}^{3}J=8.3$ Hz, 7.2 Hz and ${}^{4}J=1.6$ Hz, H7), 7.5067.13 (16H, m, H6 , H8 , C*H*-Cbz, *H*-Ph, *o*-*H*-PhOMe, *m*-*H*-Tol), 7.04 (1H, d, ${}^{3}J=3.8$ Hz, Hβ), 6.83 (2H, d, ${}^{3}J=8.9$ Hz, *m*-*H*-PhOMe), 6.81 (2H, d, ${}^{3}J=8.9$ Hz, *m*-*H*-PhOMe), 6.366 6.28 (1H, m, H1), 6.30 (2H, d, ${}^{3}J=3.8$ Hz, Hα), 5.32 (2H, s, C*H*₂-Cbz), 4.4264.61 (1H, m, H3), 4.1964.11 (1H, m, H4), 3.70 (3H, s, *Me*O), 3.69 (3H, s, *Me*O), 3.4563.37 (2H, m, H5), 2.6562.46 (2H, m, H2), 2.42 (3H, s, *p*-*Me*-Tol); 13 C-NMR (CDCl₃, 50 MHz): δ =171.7 (C4), 167.8 (*C*(O)-Tol), 160.2 (C4), 158.9 (*p*-*C*-PhOMe), 158.9 (*p*-*C*-PhOMe), 155.3 (C9), 152.2 (*C*(O)-Cbz), 148.3 (C2), 147.3 (*p*-*C*-Tol), 147.2 (C2), 144.5 (*i*-*C*-Ph), 143.6 (C6), 143.3 (*Fur*-C), 139.8 (C2 -*Fur*), 135.7 (*i*-*C*-PhOMe), 135.5 (*i*-*C*-PhOMe), 134.7 (*i*-*C*-Cbz), 134.4 (C7), 132.1, 131.0 (*o*-*C*-Tol), 130.2 (*o*-*C*-PhOMe), 130.1, 129.3, 129.0, 128.9, 128.7, 128.6, 128.5, 128.3, 128.1, 127.3, 126.2 (C5), 125.7 (C6), 124.0, 118.5 (Cα), 118.4 (C8), 118.3 (Cβ), 113.6 (*m*-*C*-PhOMe), 99.1 (C5), 87.5 (*C*₁*p*-O-5), 87.2 (Fur-C <u>*C*</u>), 87.2 (C4), 86.8 (C1), 83.2 (Fur-<u>*C*</u>), 72.4 (C3), 71.5 (<u>*C*</u>₁*p*-Cbz), 63.5 (C5), 55.4 (*Me*O), 42.3 (C2), 22.2 (*p*-*Me*-Tol); MS (ESI⁺, MeOH) *m/z*: 1072.0 [M+K]⁺. HRMS (ESI⁺): *m/z* calcd for C₆1H₄₈N₂NaO₁₄: 1055.2998 [M+Na]⁺; found 1055.3000 [M+Na]⁺.

5'-O-(4,4'-Dimethoxytrityl)-3-N-(4-methylbenzoyl)-5-(5-(3-

Benzylcarbonate-4-oxo-chromen-2-yl)fur-2-yl)ethynyl-2'-deoxyuridine, 3'-[(2-cyanoethyl)-*N*,*N*-diisopropyl]-phosphoramidite (10): To a stirred solution of **9** (0.30 mmol, 309 mg, previously azeotropically coevaporated with dry toluene) in CH₂Cl₂ (2.1 mL), previously cooled down to 0 °C, were sequentially added DIPEA (1.20 mmol, 211 μ L, 4 eq) and 2-cyanoethyl-*N*,*N*diisopropylchlorophosphoramidite (0.60 mmol, 135 μ L, 2 eq). The reaction mixture was stirred at rt for 1 h. The volatiles were removed *in vacuo* and the residue was purified by flash chromatography on silica gel eluted with toluene/EtOAc (95:5 65:35, v/v) to provide the desired compound **10** as a yellow foam (241 mg, 65 %). C₇₀H₆₅N₄O₁₅P (1233.28). *R*=0.55

(toluene/EtOAc=8:2). ¹H-NMR (CD₃CN, 200 MHz): δ =8.44 (1H, s, H6), 8.13 (1H, dd, ³*J*=8.2 Hz and ⁴*J*=1.6 Hz, H5), 7.93 (2H, d, ³*J*=8.1 Hz, *o*-*H*-Tol), 7.79 (1H, ddd, ³*J*=8.2 Hz, 7.4 Hz and ⁴*J*=1.6 Hz, H7), 7.5667.18 (18H, m, H6 , H8 , *H*-Ph, *o*-*H*-PhOMe, *H*-Ph-Cbz, *m*-*H*-Tol), 7.16 (1H, d, ³*J*=3.8 Hz, Hβ), 6.85 (4H, m, *m*-*H*-PhOMe), 6.43 (1H, d, ³*J*=3.8 Hz, Hα), 6.13 (1H, m, H1), 5.29 (2H, s, CH₂-Cbz), 4.9064.70 (1H, m, H3), 4.266 4.13 (1H, m, H4), 3.8363.70 (2H, m, *CH*₂-O), 3.68 (3H, s, *Me*O), 3.67 (3H, s, *Me*O), 3.6063.45 (2H, m, N-C*H*(CH₃)₂), 3.38 (2H, ddd, ²*J*=12.0 Hz, ³*J*=9.0 and ⁴*J*=3.2 Hz, Hz H5), 2.7162.51 (4H, m, H2 , *CH*₂-CN), 2.45 (3H, s, *p*-*Me*-Tol), 1.2261.05 (12H, m, N-CH(<u>*CH*₃)₂); ³¹P-NMR (CD₃CN, 81 MHz): δ =148.16 (1P), 148.03 (1P); HRMS (ESI⁺): *m*/z calcd for C₇₀H₆₅N₄NaO₁₅P: 1255.4076 [M+Na]⁺; found 1255.4036 [M+Na]⁺.</u>

2. ODN synthesis, purification & physical characterization

2.1 ODN synthesis and purification:

The ODN synthesis was performed on an Expedite 8900 DNA synthesizer (Applied Biosystem) using the õtrityl offö mode and mild phosphoramidite chemistry on a 0.2 mol scale. Reagents and solvents, as well as dT, Ac-dC, Pac-dA, and dmf-dG phosphoramidites were purchased from Link Technologies. The standard DNA assembly protocol õDMT-offö was used except for the following modifications: 5-Ethylthio-1H-tetrazole (ETT) was used as activating agent; Pac-anhydride was used for capping; a longer coupling time (1200 s) was applied to the 3HC phosphoramidite as well as for the following nucleotide (600 s). Non-labelled ODNs were purchased from Microsynth AG. The ODNs were cleaved from the solid support and deprotected with concentrated aqueous ammonia at room temperature for 12 h. The ODNs were analysed (0.5 mL/min) and purified (2.5 mL/min) by RP HPLC (HPLC apparatus: WatersTM 600 Controller with WatersTM 996 Photodiode Array Detector and Jasco LC-Net II / ADC apparatus. Columns: analytical, 300×4.60 mm, 5 m particle size, Clarity[®] 100Å, Phenomenex[®]; semi-preparative, Clarity[®] 5u Oligo-RP column 250 x 10 mm Phenomenex[®]). The following gradient system was used: 100 % A δ (30 min) 60 % A / 40 % B δ (5 min) 100 % B δ (5 min) 100 % A with A=Buffer pH 7.0 (1.9 L of MilliQ[®] water, 160 mL acetonitrile, 28 mL triethylamine, 12 mL of acetic acid) and B=0.2 CH₃CN:0.8 Buffer.

Fig S2. HPLC profile of AMA single strand ODN (254 nm left – 390 nm right):

Fig S3. HPLC profile of CMC single strand ODN (254 nm left – 390 nm right):

2.2 MALDI TOF/TOF analysis of ODNs:

Ammonium Citrate dibasic (DAC) (98% capillary GC) was obtained from Sigma. CH₃CN of HPLC grade was purchased from VWR chemical. Ultrapure 3-Hydroxypicolinic Acid (3-HPA) MALDI matrix was purchased from protea Biosciences. C4 pipette tips (Zip-Tip) were from Millipore.

The samples (500 pmol) was diluted to $10 \ \mu$ L of water and was desalted with a C4 pipette Tips (Zip-tip). The Zip-tip was activated before use with 2 x 5 μ L of water: CH₃CN (50:50) and 2 x 5 μ L of DAC (50 mg/mL diluted in water). The 10 μ L of the ODN solution was loaded on Zip-tip by drawing and expelling ten times. Next the zip-tip was washed with 3 x 5 μ L of DAC (50 mg/mL) and 3 x 5 μ L of water. Elution was performed with 1.5 μ L of 3-HPA matrix (80 mg/mL, 50:50 CH₃CN:DAC) directly on MALDI plate. The ODN profile was obtained on a ABSciex MALDI-TOF/TOF mass spectrometer in reflector mode with external calibration mixture (cal Mix 1+2 distributed by ABSciex). MALDI-TOF/TOF-MS analysis: MS spectra were recorded manually in a mass range of 500-6000 Da resulting from 400 laser shots of constant intensity fixed at 6200. Data were collected using 4000 series Explorer (AB SCIEX) experiments.

Fable S1. MALDI-TOF and	photophysical	characterization of the s	ynthesized FCU-labelled	oligonucleotides.
--------------------------------	---------------	---------------------------	-------------------------	-------------------

ODN	Sequence ^{b,c}	$\begin{array}{l} MALDI-TOF \\ found (calcd) [M^{^+}] \end{array}$	$\lambda_{\rm abs} {\rm (nm)}^c$	$\lambda_{\mathrm{N}^{*}}(\mathrm{nm})^{d}$	$\lambda_{\mathrm{T}^*}(\mathrm{nm})^e$	$I_{N^{\ast\!\!}}/I_{T^{\ast\!\!}}$	$\Phi(\%)^{f}$
1	5'd-CGTTTTTMTTTTTGC-3'	4757.7 (4757.2)	397	490	549	1.15	14
2	5'd-CGTTTTCMCTTTTGC-3'	4727.8 (4727.2)	398	490	554	1.21	10
3	5'd-CGTTTTAMATTTTGC-3'	4775.7 (4775.2)	400	489	557	1.01	8.7
4	5´d-CGTTTTGMGTTTTGC-3´	4807.7 (4807.2)	401	486	555	1.22	1.8

3. Spectroscopic characterization

3.1 Preparation of the samples:

For spectroscopic measurements, the ODNs prepared in phosphate buffer pH 7.0 (20 mM phosphate, 150 mM NaCl, 1 mM EDTA).

Preparation of the single strand solution: the solution of the sample was prepared by mixing 400 μ L of a stock solution of 40 mM phosphate buffer solution pH 7.0, 80 μ L of 1.5 M NaCl solution, 10 μ L of 80 mM EDTA solution, 25 μ L of 64 μ M ssODN and 285 μ L of MilliQ[®] water.

Preparation of the double strand solution: 400 μ L of a stock solution of 40 mM phosphate buffer solution pH 7.0 was mixed with 80 μ L of 1.5 M NaCl solution, 10 μ L of 80 mM EDTA solution, 25 μ L of 64 μ M ODN 1, 25 μ L of 64 μ M ODN 2 and 260 μ L of MilliQ[®] water.

3.2 Denaturation studies and melting temperatures:

Melting curves were recorded by following the temperature-dependence of the absorbance changes at 260 nm of the sample (2 M concentration of each strand). Absorption spectra were recorded in a Peltier thermostated cell holder on a Cary 4000 spectrophotometer (Varian). The pathlength of cell was 1 cm. The temperature range for denaturation measurement was 5 6 80 °C. Speed of heating was 0.3 °C/min. Cacodylate buffer pH 7 was used (10 mM cacodylate buffer, 150 mM NaCl, 1 mM EDTA). The melting curves were converted into a plot of versus temperature, where represents the fraction of single-strands in the duplex state. The melting temperatures were extracted from these curves after differentiation as described elsewhere.[6]

Table S2. Absorption and fluorescence properties of FCU in different solvents

Solvent	λ_{abs} (nm) ^{<i>a</i>}	$\lambda_{N^*}(nm)^b$	$\lambda_{\mathrm{T}^*}(\mathrm{nm})^{c}$	I_N*/I_T*	${\varPhi(\%)}^{ m d}$
HFIP ^e	387	493			33
H ₂ O	391	499			13
MeOH	387	497	551	1.03	24
EtOH	388	488	566	0.56	22
CH ₃ CN	382	466	569	0.20	17
Acetone	383	462	574	0.17	16
CHCl ₃	390	454	564	0.15	23
EtOAc	384	444	573	0.10	22

^{*a*} Position of the absorption maximum ^{*b*} Position of the emission maximum of the N* band ^{*c*} Position of the emission maximum of the T* band

^d Mean standard deviation of quantum yields, $\pm 10\%$

e Hexafluoroisopropanol

Fig S5. Normalized emission spectra of FCU in protic (A) and aprotic (B) solvents:

The emission spectra were normalized at the N* band. Excitation wavelength was 390 nm.

Duplayas		T _m (°C	$)^{c}$	$(nm)^d$	$(nm)^e$	$(nm)^f$	I /I	መ (0/_)ያ
Duplexes	\mathbf{M}^{a}	Wild Type	ΔTm (°C) ^b	λ_{abs} (IIII)	л _{N*} (ШП)	х _{Т*} (шп)	1 _{N*/} 1 _{T*}	$\Psi(70)^{\circ}$
TMT·AAA	45.9	49.5	-3.6	392	482	-	-	14.9
TMT·ATA	37.8	40.5	-2.7	397	487	566	0.80	17.6
TMT·ACA	39.7	39	0.7	397	488	567	0.86	19.9
TMT·AGA	39.1	40.7	-1.6	399	488	560	1.15	7.1
TMT·AAbA	39.2	34.5	4.7	401	489	567	0.96	19.6
CMC · GAG	46.7	51.3	-4.6	392	483	-	-	10
CMC·GTG	39.4	41.1	-1.7	400	484	562	1.37	3.4
CMC·GCG	43.2	42.1	1.1	401	484	561	1.29	2.4
CMC·GGG	42.7	46.5	-3.8	403	488	549	1.28	5.5
CMC · GAbG	43.1	37.2	5.9	403	488	558	1.25	2.1
AMA · TAT	41.9	47.3	-5.4	395	486	-	-	16.8
AMA · TTT	38.1	39.8	-1.7	398	487	567	0.79	18.9
AMA · TCT	40.4	38.5	1.9	398	486	567	0.76	20.8
AMA · TGT	38.7	42.7	-4.0	400	487	562	0.83	8.3
AMA · TAbT	37.5	30.5	7.0	402	487	561	1.23	22.9
GMG · CAC	52.1	54.8	-2.7	395	484	-	-	1.2
GMG · CTC	46.6	46.6	0	400	485	569	0.91	1.6
GMG · CCC	48.6	43.5	5.1	401	485	570	0.96	1.7
G <mark>M</mark> G∙ <i>CGC</i>	47.9	49.7	-1.8	402	484	566	0.74	1.7
GMG · CAbC	45.8	37.5	8.3	403	487	567	1.08	1.6

Table S3. Absorption, fluorescence and thermal melting properties of the FCU-labelled DNA duplexes

	Duplayas ^b		$T_{\rm m}$ (°C) ^e		$(nm)^d$	$(nm)^e$	$1 \pmod{1}$	I/I	$\Phi(\%)^g$	
	Duplexes	M Wild Type ΔTm (°C)		ΔTm (°C)	\mathcal{M}_{abs} (IIII)	м _{N*} (шп)	<i>м</i> т* (шп)	1 _{N*} /1 _{T*}	$\Psi(70)$	
	T <mark>M</mark> T∙ <i>rAAA</i>	35.9	41.4	-5.5	402	485	552	1.38	23.2	
	AMA• <i>rUAU</i>	34.5	40.9	-6.4	403	485	548	1.35	16.5	
^a M denotes the	e FCU.									
^b $\Delta T_{\rm m}$ refers to	$^{b}\Delta T_{\rm m}$ refers to the difference of Tm between the labelled and non labelled ODNs									
$^{c}T_{m}$ Melting te	$^{c}T_{\rm m}$ Melting temperature; ± 0.5 °C									
^d Position of th	^d Position of the absorption maximum									
^e Position of the emission maximum of the N* band										
^f Position of the emission maximum of the T* band										
g Moon standor	^g Moon standard deviation of quantum violds +10%									

 g Mean standard deviation of quantum yields, ±10%

Fig S6. Melting curves of the non labelled duplexes:

Fig S7. Melting curves of the FCU-labelled duplexes:

3.3. Circular dichroism

Circular dichroism spectra were recorded with 2 $\,$ M solution of the non labeled dsDNA and labeled dsDNA (FCU opposite A, T or Ab) in phosphate buffer pH 7 (20 mM phosphate buffer, 150 mM NaCl, 1 mM EDTA) at 25 °C on a Jasco J-810 spectropolarimeter. Two maxima were observed in CD spectra: a negative one at 249 nm and a positive one at 282 nm.

Fig S8. Representative CD spectra of non labelled and FCU-labelled duplexes:

Fig S9. CD spectra of B DNA/DNA and A DNA/RNA:

3.4. Absorption and Fluorescence spectra

The absorption and fluorescence spectra were recorded in phosphate buffer of pH 7 (20 mM phosphate buffer, 150 mM NaCl, 1 mM EDTA). The absorption spectra were recorded on a Cary 300 Scan spectrophotometer (Varian) using 1 cm quartz cells at 20 °C. The fluorescence spectra were recorded on a FluoroMax 4.0 spectrofluorometer (Jobin Yvon, Horiba) using excitation and emission slits of 2 nm and were corrected at both excitation and emission. The solutions had an absorbance of about 0.05 at 20 °C at the 390 nm excitation wavelength. The quantum yields were corrected according to the variation of the refractive index of the solvents.

Fig S10. UV spectra of FCU-labelled single and double strands:

Fig S11. Fluorescence spectra of single and double strands with TMT:

Fig S13. Fluorescence spectra of single and double strands with CMC:

Fig S14. Fluorescence spectra of single and double strands with GMG:

3.5. Time resolved fluorescence measurements

Time-resolved fluorescence measurements were performed with the time-correlated, single-photon counting technique (TCSPC).[7] Excitation at 420 nm was provided by a pulse-picked frequency doubled Ti-sapphire laser (Tsunami, Spectra Physics), pumped by a Millenia X laser(Spectra Physics). Emission was collected through a polarizer set at magic angle and an 8 nm band-pass monochromator (Jobin-Yvon H10) set at emission maximum. The single photon events were detected with a microchannel plate Hamamatsu R3809Uphotomultiplier coupled to a Philips 6954 pulse preamplifier and recorded on a multichannel analyzer (Ortec 7100), calibrated at 25.5 ps/channel. The instrumental response function was recorded with a polished aluminum reflector, and its full width at half-maximum was 40 ps. Fluorescence intensity decays [I(t)] were analyzed as a sum of exponentials : $I(t) = _i \exp(-t/\tau_i)$, where τ_i values are the associated amplitudes such that $_i = 1$. The mean lifetime was calculated according to the relationship $\langle \tau \rangle = _i \tau_i$.

Collecting Band	τ_1 (ns)	a_1	τ_2 (ns)	a_2	< >	
e		•	-2 (-)	-		
Water						
N*	1.11	-	-	-	1.11	
Methanol						
N*	0.65	0.90	1.35	0.10	0.72	
T*	0.55	-0.35	1.29	0.65	1.03	
Ethanol						
N*	0.44	0.96	1.60	0.04	0.49	
T*	0.31	-0.35	1.50	0.65	1.08	
EtOAc						
N*	0.07	0.98	2.15	0.02	0.11	
T*	0.07	-0.48	2.10	0.52	1.13	

Table S4. Fluorescence decays fitting parameters of FCU in solvents

Table S5. Fluorescence decays fitting parameters of matched and mismatched duplexes

Collecting Band	τ_1 (ns)	a1	τ_2 (ns)	a_2	τ_3 (ns)	a ₃	< >
TMT (ss DNA)							
N*	0.20	0.42	0.86	0.45	1.83	0.13	0.71
T^*	0.25	-0.23	-	-	2.26	0.77	1.80
T M T-AAA							
N*	0.62	0.56	0.87	0.44	-	-	0.73
T*	0.61	-0.47	0.73	0.52	2.65	0.01	0.68
TMT-AAbA							
N*	0.38	0.56	0.97	0.35	2.34	0.09	0.77
T*	0.36	-0.38	-	-	3.35	0.62	2.207
TMT-ACA							
N*	0.18	0.61	0.75	0.27	2.36	0.12	0.59
T*	0.21	-0.36	-	-	3.41	0.64	2.26
TMT-ATA							
N*	0.20	0.61	0.73	0.30	2.01	0.09	0.52
T*	0.21	-0.37	-	-	3.30	0.63	2.16

Table S6. Fluorescence decays fitting parameters of DNA/DNA and DNA/RNA duplexes

Collecting Band	τ_1 (ns)	a ₁	τ_2 (ns)	a ₂	τ_3 (ns)	a ₃	< >
TMT-AAA							
N*	0.62	0.56	0.87	0.44	-	-	0.73
T^*	0.61	-0.47	0.73	0.52	2.65	0.01	0.68
TMT-rAAA							
N*	0.24	0.22	0.61	0.71	1.59	0.07	0.60
T*	0.22	-0.32	1.25	0.39	3.42	0.28	1.53

3.6. pH dependence of the absorption and fluorescence spectra

pH of the solution was adjusted by adding diluted acid or base to the phosphate buffer solution (20 mM phosphate buffer, 150 mM NaCl). The absorption spectra were recorded on a Cary 4000 spectrophotometer (Varian) using 1 cm quartz cells at 20 °C. The fluorescence spectra were recorded on a FluoroMax 4.0 spectrofluorometer (Jobin Yvon, Horiba) by using excitation and emission slits of 2 nm and were corrected at excitation and emission. Excitation wavelength was 390 nm.

Figure S18. UV (left) and Fluorescence (right) spectra of CMC-GAG (match) at different pH.

Figure S20. pH titration curves of FCU (blue), CMC (orange), CMC-GAG (green) and CMC-GCG (brown).

Sample	pK _a 3-OH
FCU	é 8.1
СМС	é 8.8
CMC-GAG	é 8.8
CMC-GCG	é 9.2

References:

[1] W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals*, 7th ed.; Butterworth-Heinemann: Oxford, 2013.

[2] W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 292362925.

[3] (a) H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, **62**, 751267515; (b) G. R. Fulmer, A. Miller, N. H. Sherden and H. E. Gottlieb, Organometallics, 2010, **29**, 217662179.

[4] D. Dziuba, I. A. Karpenko, N. P. F. Barthes, B. Y. Michel, A. S. Klymchenko, R. Benhida, R., A. P. Demchenko, Y. Mely and A. Burger, *Chem. Eur. J.*, **2014**, *20*, 199862009.

[5] N. P. F. Barthes, K. Gavvala, D. Dziuba, D. Bonhomme, I. A. Karpenko, A. S. Dabert-Gay, D. Debayle, A. P. Demchenko, R. Benhida, B. Y. Michel, Y. Mely and A. Burger, *J. Mater. Chem. C*, **2016**, *4*, 301063017.

[6] Breslauer, K. J. Methods Enzymol. 1995, 259, 221 242.

[7] J.R. Lakowicz. Principles of Fluorescence Spectroscopy; Kluwer Academic, NewYork, 2006.

4. NMR spectra of compounds

ppm

Ó