Supporting Information

B(C₆F₅)₃ catalysed 1,6-conjugate allylation of para-Quinone Methides: Expedient Access to Allyl Diarylmethanes

Sriram Mahesh, Guddi Kant and Ramasamy Vijaya Anand*

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab – 140306, India.
Email: rvijayan@iisermohali.ac.in

Table of contents
1. General Information S2
2. General procedure for B(C₆F₅)₃ catalysed Allylation of para-quinone methides S2
3. Characterisation of products (3) S2
4. Characterisation of products (3a-3x) S3-S10
5. Characterisation of products (4a-4h) S11-S14
6. Characterisation of product (5) S14
7. References S15
7. NMR Spectral data

 a) ¹H and ¹³C NMR spectra of (3) S16
 b) ¹H, ¹³C and NMR spectra of (3a-3x) S17-S41
 c) ¹H, ¹³C spectra of (4a-4h) S42-S49
 b) ¹H and ¹³C NMR spectra of (5) S50
General methods: Most of the reagents and starting materials used were purchased from commercial sources and used as such. All the p-Quinone methides were prepared by following a known literature procedure. All the substituted allyltr trimethylsilanes were prepared by following a literature method. Melting points were recorded on SMP20 Melting point apparatus and are uncorrected. 1H, 13C and 19F spectra were recorded in CDCl$_3$ (400, 100, 376 MHz respectively) on Brucker FT-NMR spectrometer. Chemical shifts values are reported in parts per million relative to TMS (for 1H and 13C), BF$_3$.Et$_2$O (for 19F). High resolution mass spectra were recorded on Waters Q-TOF Premier-HAB213 spectrometer. FT-IR spectra were recorded on a Perkin – Elmer FT-IR spectrometer. Thin layer chromatography was performed on Merck silica gel 60 F$_{254}$ TLC plates using EtOAc/Haxane as an eluent. column chromatography was carried out through silica gel (100-200 mesh) using ethyl acetate/hexane mixture as an eluent.

General procedure for the allylation of p-quinone methides: Allyltr trimethylsilane (0.15 mmol) was added to a solution of p-quinone methide (0.1 mmol) and B(C$_6$F$_5$)$_3$ (0.01 mmol) in 1.5 ml of CH$_2$Cl$_2$ and the resultant mixture was stirred at room temperature until the p-quinone methide was completely consumed (by T.L.C.). The reaction mixture was then quenched with tetrabutylammoniumfluoride (0.15 mmol) at rt. The solvent was removed under reduced pressure and the residue was directly loaded on a silica gel column and purified using 0.5-1% ethyl acetate/hexane mixture as an eluent to get the pure allyl diarylmethane.

2,6-Di-tert-butyl-4-(1-(4-methoxyphenyl)but-3-en-1-yl)phenol (3): Yellow oil; yield 98% (35.4 mg); R$_f$ = 0.5 (5% EtOAc in hexane); FT-IR 3641, 2958, 2915, 2873 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 7.18 (d, J = 8.6 Hz, 2H), 7.03 (s, 2H), 6.85 (d, J = 8.7 Hz, 2H), 5.73 (ddt, J = 17.0, 10.2, 6.9 Hz, 1H), 5.07-5.02(m, 1H), 5.05 (s, 1H), 4.97–4.94 (m, 1H), 3.91–3.87 (m, 1H), 3.79 (s, 3H), 2.79–2.75 (m, 2H), 1.42 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 157.9, 152.0,
137.6, 137.3, 135.7, 135.6, 129.0, 124.3, 116.0, 113.8, 55.3, 50.6, 41.0, 34.5, 30.5; HRMS (ESI): m/z calcd for C_{25}H_{33}O [M-H]^−: 365.2480; found: 365.2471.

2,6-Di-tert-butyl-4-(1-(4-(tert-butyl)phenyl)but-3-en-1-yl)phenol (3a): Yellow oil; yield 88% (34.5 mg); R_f = 0.6 (5% EtOAc in hexane); FT-IR 3646, 2958, 2911, 2873 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.30\) (d, \(J = 8.4\) Hz, 2H), \(7.18\) (d, \(J = 8.3\) Hz, 2H), \(7.04\) (s, 2H), \(5.72\) (ddt, \(J = 17.0, 10.2, 6.9\) Hz, 1H), \(5.06-5.01\) (m, 1H), \(5.03\) (s, 1H), \(4.95-4.92\) (m, 1H), \(3.88\) (t, \(J = 7.8\) Hz, 1H), \(2.80-2.75\) (m, 2H), \(2.64\) (q, \(J = 7.6\) Hz, 2H), \(1.41\) (s, 18H), \(1.30\) (s, 9H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 152.1, 148.7, 142.2, 137.7, 135.5, 135.4, 127.5, 125.3, 124.5, 115.9, 51.1, 41.0, 34.5, 34.4, 31.5, 30.5; HRMS (ESI): m/z calcd for C_{28}H_{41}O [M+H]^+: 393.3158; found: 393.3150.

2,6-Di-tert-butyl-4-(1-(4-ethylphenyl)but-3-en-1-yl)phenol (3b): Yellow oil; yield 98% (35.7 mg); R_f = 0.8 (5% EtOAc in hexane); FT-IR 3644, 2961, 2927, 2872 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.20\) (d, \(J = 8.1\) Hz, 2H), \(7.14\) (d, \(J = 8.1\) Hz, 2H), \(7.07\) (s, 2H), \(5.75\) (ddt, \(J = 17.0, 10.2, 6.9\) Hz, 1H), \(5.08-5.04\) (m, 1H), \(5.05\) (s, 1H), \(4.98-4.95\) (m, 1H), \(3.91\) (t, \(J = 7.8\) Hz, 1H), \(2.64\) (q, \(J = 7.6\) Hz, 2H), \(1.44\) (s, 18H), \(1.24\) (t, \(J = 7.6\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 152.1, 142.4, 141.8, 137.7, 135.6, 135.5, 127.92, 127.90, 124.4, 115.9, 51.2, 40.9, 34.5, 30.5, 28.5, 15.7; HRMS (ESI): m/z calcd for C_{26}H_{35}O [M+H]^+: 363.2687; found: 363.2677.

2,6-Di-tert-butyl-4-(1-(2,3-dimethoxyphenyl)but-3-en-1-yl)phenol (3c): Yellow solid; yield 80% (31.7 mg); R_f = 0.2 (5% EtOAc in hexane); M.P. 88-90 °C; FT-IR 3642, 3077, 2958, 2915, 2877 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.08\) (s, 2H), \(7.00\) (t, \(J = 8.0\) Hz, 1H), \(6.88\) (dd, \(J = 7.9, 1.4\) Hz, 1H), \(6.75\) (dd, \(J = 8.1, 1.4\) Hz, 1H), \(5.72\) (ddt, \(J = 17.0, 10.2, 6.8\) Hz 1H), \(5.04-4.99\) (m, 1H), \(5.00\) (s, 1H), \(4.93-4.90\) (m, 1H), \(4.43\) (t, \(J = 8.0\) Hz, 1H), \(3.84\) (s, 3H), \(3.68\) (s, 3H), \(2.77-2.73\) (m, 2H), \(1.40\) (s, 18H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 152.8, 152.0, 146.9, 139.1, 137.6, 137.3, 135.7, 135.6, 129.0, 124.3, 116.0, 113.8, 55.3, 50.6, 41.0, 34.5, 30.5; HRMS (ESI): m/z calcd for C_{25}H_{33}O [M-H]^−: 365.2480; found: 365.2471.
137.6, 135.5, 135.3, 124.6, 123.9, 120.1, 115.9, 109.9, 60.7, 55.7, 43.4, 40.2, 34.5, 30.5; HRMS (ESI): m/z calcd for C_{26}H_{35}O_3 [M-H]^+ : 395.2585; found: 395.2575.

4-(1-(2-(Allyloxy)phenyl)but-3-en-1-yl)-2,6-di-tert-butylphenol (3d): Yellow oil; yield 85% (33.3 mg); R_f = 0.3 (5% EtOAc in hexane); FT-IR 3646, 2965, 2915, 2877 cm^{-1}; ^1H NMR (400 MHz, CDCl_3) δ = 7.22 (dd, J = 7.6, 1.6 Hz, 1H), 7.14–7.10 (m, 1H), 7.08 (s, 2H), 6.91 (td, J = 7.4, 0.9 Hz, 1H), 6.82–6.80 (m, 1H), 6.02 (ddt, J = 17.2, 12.3, 3.2 Hz, 1H), 5.74 (ddt, 17.0, 10.2, 6.8 Hz, 1H), 5.38 (dq, J = 17.3, 1.7 Hz, 1H), 5.24 (dq, J = 10.6, 1.5 Hz, 1H), 5.05–4.99 (m, 1H), 4.99 (s, 1H), 4.93–4.90 (m, 1H), 4.56–4.44 (m, 3H), 2.86–2.70 (m, 2H), 1.40 ppm (s, 18H); ^13C NMR (100 MHz, CDCl_3) δ = 156.0, 151.9, 137.9, 135.3, 135.0, 134.0, 133.7, 128.1, 126.8, 124.8, 120.8, 116.9, 115.7, 112.0, 68.9, 43.3, 39.6, 34.5, 30.5; HRMS (ESI): m/z calcd for C_{27}H_{35}O_2 [M-H]^+ : 391.2636; found: 391.2623.

2,6-Di-tert-butyl-4-(1-phenylbut-3-en-1-yl)phenol (3e): Yellow semi solid; yield 94% (31.6 mg); R_f = 0.8 (5% EtOAc in hexane); FT-IR 3646, 2954, 2923, 2858 cm^{-1}; ^1H NMR (400 MHz, CDCl_3) δ = 7.31–7.25 (m, 4H), 7.20–7.15 (m, 1H), 7.04 (s, 2H), 5.76 (ddt, J = 17.0, 10.2, 6.9 Hz, 1H), 5.06–5.01 (m, 1H), 5.04 (s, 1H), 4.96–4.93 (m, 1H), 3.93 (t, J = 7.8 Hz, 1H), 2.85–2.74 (m, 2H), 1.42 ppm (s, 18H); ^13C NMR (100 MHz, CDCl_3) δ = 152.1, 145.1, 137.5, 135.6, 135.3, 128.4, 128.1, 126.1, 124.5, 116.0, 51.4, 40.8, 34.5, 30.5; HRMS (ESI): m/z calcd for C_{24}H_{31}O [M-H]^+ : 335.2374; found: 335.2362.

2,6-Di-tert-butyl-4-(1-(2-fluorophenyl)but-3-en-1-yl)phenol (3f): Yellow oil; yield 70% (24.8 mg); R_f = 0.6 (5% EtOAc in hexane); FT-IR 3646, 2958, 2919, 2873 cm^{-1}; ^1H NMR (400 MHz, CDCl_3) δ = 7.26 (td, J = 7.5, 1.8 Hz, 1H), 7.18–7.13 (m, 1H), 7.10–7.06 (m, 1H), 7.08 (s, 2H), 7.03–6.98 (m, 1H), 5.74 (ddt, J = 17.0, 10.2, 6.8 Hz, 1H), 5.07 (s, 1H), 5.07–5.02 (m, 1H), 4.97–4.94 (m, 2H), 4.31 (t, J = 7.9 Hz, 1H), 2.87–2.75 (m, 2H), 1.42 (s, 18H); ^13C NMR (100 MHz,
CDCl$_3$ δ = 160.8 (d, $J = 244.0$ Hz), 152.2, 137.0, 135.7, 134.0, 132.0 (d, $J = 15.0$ Hz), 129.1 (d, $J = 5.0$ Hz), 127.5 (d, $J = 9.0$ Hz), 124.6, 124.1 (d, $J = 4.0$ Hz), 116.3, 115.5 (d, $J = 22.0$ Hz), 43.6 (d, $J = 2.0$ Hz), 39.6, 34.5, 30.5; 19F NMR (376 MHz, CDCl$_3$), δ = -117.7; HRMS (ESI): m/z calcd for C$_{24}$H$_{30}$FO [M-H]$^+$: 353.2280; found: 353.2272.

4-(1-(2-Bromophenyl)but-3-en-1-yl)-2,6-di-tert-butylphenol (3g): Yellow oil; yield 60% (24.8 mg); R$_f$ = 0.6 (5% EtOAc in hexane); FT-IR 3638, 2958, 2931, 2869 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 7.53 (d, $J = 7.8$ Hz, 1H), 7.25–7.24 (m, 2H), 7.09 (s, 2H), 7.04–7.00 (m, 1H), 5.73 (ddt, $J = 17.0$, 10.2, 6.8 Hz, 1H), 5.07–5.02 (m, 1H), 5.05 (s, 1H), 4.96–4.93 (m, 1H), 4.52 (t, $J = 7.8$ Hz, 1H), 2.79–2.75 (m, 2H), 1.41 ppm (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 152.2, 144.3, 136.8, 135.6, 133.7, 133.0, 129.0, 127.6, 127.5, 125.3, 124.8, 116.4, 48.9, 40.0, 34.5, 30.5; HRMS (ESI): m/z calcd for C$_{24}$H$_{30}$BrO [M-H]$^+$: 413.1479; found: 413.1470.

2,6-Di-tert-butyl-4-(1-(4-(trifluoromethyl)phenyl)but-3-en-1-yl)phenol (3h): Colourless oil; yield 65% (26.3 mg); R$_f$ = 0.8 (5% EtOAc in hexane); FT-IR 3646, 2958, 2927, 2858 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 7.54 (d, $J = 8.2$ Hz, 2H), 7.35 (d, $J = 8.1$ Hz, 2H), 7.02 (s, 2H), 5.70 (ddt, $J = 17.0$, 10.2, 6.9 Hz, 1H), 5.09 (s, 1H), 5.06–5.02 (m, 1H), 4.98–4.95 (m, 1H), 3.99 (t, $J = 7.9$ Hz, 1H), 2.82–2.78 (m, 2H), 1.42 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 152.4, 149.3 (d, $J = 1.2$ Hz), 136.8, 135.9, 134.2, 128.4, 128.3 (q, $J = 32.0$ Hz), 125.4 (q, $J = 3.7$ Hz), 124.5 (q, $J = 270.0$ Hz), 124.4, 116.6, 51.2, 40.4, 34.5, 30.4; 19F NMR (376 MHz, CDCl$_3$), δ = -62.3 ppm; HRMS (ESI): m/z calcd for C$_{25}$H$_{30}$F$_3$O [M-H]$^+$: 403.2248; found: 403.2234.

2,6-Di-tert-butyl-4-(1-(4-(trifluoromethoxy)phenyl)but-3-en-1-yl)phenol (3i): Yellow color semi solid; yield 85% (35.7 mg); R$_f$ = 0.8 (5% EtOAc in hexane); FT-IR 3646, 2958, 2927, 2858 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 7.26–7.23 (m, 2H), 7.14–7.11 (m, 2H), 7.0 (s, 2H), 5.69 (ddt, $J = 17.0$, 10.2, 6.9 Hz, 1H), 5.1 (s, 1H), 5.06–5.00 (m, 1H), 4.97–4.94 (m, 1H), 3.93 (t, $J =
8.0 Hz, 1H), 2.78–2.74 (m, 2H), 1.41 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 152.3, 147.5 (q, J = 1.5 Hz), 143.9, 137.0, 135.8, 134.7, 129.3, 124.4, 120.9, 120.6 (q, J = 257.8 Hz), 116.4, 50.7, 40.8, 34.5, 30.5 ppm; 19F NMR (376 MHz, CDCl$_3$) δ = -57.9; HRMS (ESI): m/z calcd for C$_{25}$H$_{30}$F$_3$O$_2$ [M-H]$^+$: 419.2197; found: 419.2184.

2-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)but-3-en-1-yl)phenyl acetate (3j): Yellow oil; yield 86% (33.9 mg); $R_f = 0.4$ (5% EtOAc in hexane); FT-IR 3642, 2961, 2923, 2873, 1761 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 7.33–7.30 (m, 1H), 7.24–7.18 (m, 2H), 7.05–7.01 (m, 1H), 6.98 (s, 2H), 5.73 (ddt, J = 17.0, 10.2, 6.8 Hz, 1H), 5.07–5.02 (m, 1H), 5.05 (s, 1H), 4.98–4.95 (m, 1H), 4.11 (t, J = 7.7 Hz, 1H), 2.76 (t, J = 7.1 Hz, 2H), 2.21 (s, 3H), 1.40 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 169.2, 152.1, 148.7, 137.1, 136.8, 135.6, 134.1, 128.7, 127.0, 126.1, 124.5, 122.8, 116.2, 44.3, 39.6, 34.5, 30.4, 21.1; HRMS (ESI): m/z calcd for C$_{26}$H$_{33}$O$_3$Na [M + Na]$^+$: 417.2408; found: 417.2400.

4-(1-(2-Bromo-5-fluorophenyl)but-3-en-1-yl)-2,6-di-tert-butylphenol (3k): Yellow colour solid; yield 63% (27.2 mg); $R_f = 0.6$ (5% EtOAc in hexane); M.P. 83–85 °C; FT-IR 3646, 2958, 2927, 2858 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 7.48 (dd, J = 8.8, 5.5 Hz, 1H), 7.07 (s, 2H), 6.94 (dd, J = 10.0, 3.0 Hz, 1H), 6.78–6.74 (m, 1H), 5.71 (ddt, J = 16.9, 10.2, 6.8 Hz, 1H), 5.08 (s, 1H), 5.07–5.03 (m, 1H), 4.98–4.95 (m, 1H), 4.48 (t, J = 7.7 Hz, 1H), 2.76–2.72 (m, 2H), 1.41 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ 162.3 (d, J = 245.0 Hz), 152.5, 146.7 (d, J = 6.0 Hz), 136.3, 135.8, 134.0 (d, J = 8.0 Hz), 132.9, 124.7, 119.1 (d, J = 3.0 Hz), 116.8, 116.0 (d, J = 23.0 Hz), 114.8 (d, J = 23.0 Hz), 49.1 (d, J = 1.0 Hz), 39.8, 34.5, 30.5; 19F NMR (376 MHz, CDCl$_3$) δ = -114.4; HRMS (ESI): m/z calcd for C$_{24}$H$_{20}$BrFO [M-H]$^+$: 431.1385; found: 431.1372.

4-(1-(6-Bromobenzod[i][1,3]dioxol-5-yl)but-3-en-1-yl)-2,6-di-tert-butylphenol (3l): Yellow oil; yield 70% (32.2 mg); $R_f = 0.4$ (5% EtOAc in hexane); FT-IR 3641, 2957, 2914, 2872 cm$^{-1}$;
H NMR (400 MHz, CDCl$_3$) $\delta = 7.09$ (s, 2H), 6.99 (s, 1H), 6.69 (s, 1H), 5.92 (dd, $J = 10.6$, 1.2 Hz, 2H), 5.73 (ddt, $J = 16.9$, 10.2, 6.8 Hz, 1H), 5.10 (s, 1H), 5.08–5.03 (m, 1H), 4.98–4.95 (m, 1H), 4.48 (t, $J = 7.9$ Hz, 1H), 2.78–2.66 (m, 2H), 1.42 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) $\delta = 152.3$, 147.6, 146.4, 137.9, 136.7, 135.7, 133.8, 124.5, 116.4, 114.9, 112.6, 108.5, 101.7, 48.6, 39.8, 34.5, 30.5; HRMS (ESI): m/z calcd for C$_{25}$H$_{30}$BrO$_3$ [M-H]$^+$: 457.1378; found: 457.1369.

2,6-Di-tert-butyl-4-(1-(4-(phenylethynyl)phenyl)but-3-en-1-yl)phenol (3m): Yellow oil; yield 80% (35 mg); $R_f = 0.5$ (5% EtOAc in hexane); FT-IR 3634, 2958, 2923, 2873 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.53$–7.51 (m, 2H), 7.46 (d, $J = 8.2$ Hz, 2H), 7.37–7.31 (m, 3H), 7.23 (d, $J = 8.2$ Hz, 2H), 7.02 (s, 2H), 5.72 (ddt, $J = 17.0$, 10.2, 6.9 Hz, 1H), 5.06 (s, 1H), 5.06–5.01 (m, 1H), 4.97–4.94 (m, 1H), 3.94 (t, $J = 7.8$ Hz, 1H), 2.78 (t, $J = 7.2$ Hz, 2H), 1.41 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) $\delta = 152.2$, 145.6, 137.2, 135.7, 134.8, 131.8, 131.7, 128.5, 128.3, 128.2, 124.4, 123.6, 120.9, 116.3, 89.7, 89.0, 51.2, 40.6, 34.5, 30.5; HRMS (ESI): m/z calcd for C$_{32}$H$_{37}$O [M+H]$^+$: 437.2845; found: 437.2829.

2,6-Di-tert-butyl-4-(1-(pyren-1-yl)but-3-en-1-yl)phenol (3n): Yellow soild; yield 72% (33.1 mg); $R_f = 0.5$ (5% EtOAc in hexane); M.P. 129-131°C; FT-IR 3634, 2958, 2916, 2872 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.50$ (d, $J = 9.4$ Hz, 1H), 8.17 (d, $J = 8.0$ Hz, 1H), 8.11 (d, $J = 7.6$ Hz, 1H), 8.03 (s, 2H), 8.00–7.97 (m, 2H), 7.18 (s, 2H), 5.81 (ddt, $J = 16.9$, 10.2, 6.8 Hz, 1H), 5.16–5.08 (m, 2H), 5.04 (s, 1H), 4.96–4.92 (m, 1H), 3.14–3.03 (m, 2H), 1.38 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) $\delta = 152.1$, 139.2, 137.4, 135.7, 135.2, 131.6, 130.9, 129.7, 128.9, 127.7, 127.4, 126.9, 125.9, 125.4, 125.3, 125.2, 125.1, 125.0, 124.8, 124.7, 123.4, 116.3, 46.0, 41.2, 34.5, 30.5; HRMS (ESI): m/z calcd for C$_{34}$H$_{35}$O [M-H]$^+$: 459.2687; found: 459.2681.
4-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)but-3-en-1-yl)-2-methoxyphenyl acetate (3o):
Yellow soild; yield 93% (39.4 mg); \(R_f = 0.2 \) (5% EtOAc in hexane); FT-IR 3638, 2958, 2915, 2873, 1765 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.03 \) (s, 2H), 6.94 (d, \(J = 7.9 \) Hz, 1H), 6.83 (s, 1H) 6.83–6.81 (m, 1H), 5.73 (ddt, \(J = 16.9, 10.2, 6.8 \) Hz, 1H), 5.06 (s, 1H), 5.06–5.02 (m, 1H), 4.97–4.94 (m, 1H), 3.89 (t, \(J = 7.8 \) Hz, 1H), 3.79 (s, 3H), 2.78–2.74 (m, 2H), 2.30 (s, 3H), 1.41 (s, 18H); 13C NMR (100 MHz, CDCl\(_3\)) \(\delta = 169.3, 152.2, 150.8, 144.1, 137.9, 137.3, 135.7, 134.7, 124.4, 122.5, 120.1, 116.2, 112.4, 55.9, 51.4, 41.0, 34.5, 30.5, 20.9; HRMS (ESI): m/z calcd for C\(_{27}\)H\(_{37}\)O\(_4\) [M+H]\(^+\): 425.2693; found: 425.2680.

Cyclopentyl(2-[1-{3,5-di-tert-butyl-4-hydroxyphenyl}but-3-en-1-yl]cyclopentyl)iron (3p):
Yellow oil; yield 76% (33.7 mg); \(R_f = 0.5 \) (5% EtOAc in hexane); FT-IR 3642, 3084, 2956, 2924, 2855 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 6.99 \) (s, 2H), 5.72 (ddt, \(J = 17.1, 9.8, 7.1 \) Hz, 1H), 5.03 (s, 1H), 5.02–4.97 (m, 1H), 4.94–4.91 (m, 1H), 4.11–4.03 (m, 3H), 4.0 (s, 5H), 3.92 (bs, 1H), 3.55 (dd, \(J = 9.3, 5.8 \) Hz, 1H), 2.75–2.69 (m, 1H), 2.63–2.55 (m, 1H), 1.43 (s, 18H); 13C NMR (100 MHz, CDCl\(_3\)) \(\delta = 152.0, 137.9, 135.4, 135.3, 124.6, 115.6, 94.9, 68.6, 67.54, 67.48, 67.4, 66.9, 46.0, 42.2, 34.5, 30.6; HRMS (ESI): m/z calcd for C\(_{28}\)H\(_{37}\)FeO [M+H]\(^+\): 445.2195; found: 445.2180.

4-(1-([1,1'-Biphenyl]-4-yl)but-3-en-1-yl)-2,6-di-tert-butylphenol (3q): Yellow semi soild; yield 85% (35 mg); \(R_f = 0.5 \) (5% EtOAc in hexane); FT-IR 3642, 2956, 2924, 2855 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.60–7.58 \) (m, 4H), 7.53 (d, \(J = 8.2 \) Hz, 1H), 7.43 (t, \(J = 7.4 \) Hz, 2H), 7.34–7.31 (m, 3H), 7.08 (s, 2H), 5.77 (ddt, \(J = 17.0, 10.2, 6.9 \) Hz, 1H), 5.10–5.05 (m, 1H), 5.06 (s, 1H), 4.99–4.96 (m, 1H), 3.97 (t, \(J = 7.8 \) Hz, 1H), 2.89–2.77 (m, 2H), 1.43 (s, 18H); 13C NMR (100 MHz, CDCl\(_3\)) \(\delta = 152.2, 144.3, 141.2, 138.9, 137.5, 135.7, 135.2, 128.8, 128.5,

4-(1-(Anthracen-9-yl)but-3-en-1-yl)-2,6-di-tert-butylphenol (3r): Yellow semi soild; yield 62% (27 mg); R$_f$ = 0.5 (5% EtOAc in hexane); FT-IR 3627, 2958, 2931, 2865 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 7.74–7.72 (m, 1H), 7.43–7.41 (m, 1H), 7.31–7.19 (m, 8H), 7.17–7.13 (m, 1H), 6.99 (td, J = 7.6, 1.3 Hz, 1H), 6.94 (s, 1H), 5.78 (ddt, J = 17.2, 10.0, 7.0 Hz, 1H), 5.21 (s, 1H), 4.96–4.94 (m, 1H), 4.91–4.87 (m, 1H), 3.92 (t, J = 7.4 Hz, 1H), 2.50 (t, J = 7.2 Hz, 2H), 1.34 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 153.2, 141.1, 139.5, 139.4, 136.5, 135.5, 135.0, 133.8, 128.8, 128.4, 128.3, 127.4, 127.2, 126.8, 126.63, 126.59, 126.5, 125.2, 123.7, 116.8, 48.6, 43.6, 34.4, 30.3; HRMS (ESI): m/z calcd for C$_{32}$H$_{37}$O [M+H]$^+$: 437.2845; found: 437.2831.

2,6-Di-tert-butyl-4-(1-(naphthalen-2-yl)but-3-en-1-yl)phenol (3s): Yellow oil; yield 89% (34.3 mg); R$_f$ = 0.5 (5% EtOAc in hexane); FT-IR 3640, 2957, 2925, 2872 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 8.21 (d, J = 8.5 Hz, 1H); 7.86–7.84 (m, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.52–7.41 (m, 4H), 7.10 (s, 2H), 5.80 (ddt, J = 17.0, 10.2, 6.8 Hz, 1H), 5.11–5.05 (m, 1H), 5.03 (s, 1H), 4.96–4.93 (m, 1H), 4.79 (t, J = 7.7 Hz, 1H), 2.99–2.84 (m, 2H), 1.39 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 152.1, 140.9, 137.6, 135.6, 134.7, 134.2, 132.1, 129.0, 126.8, 125.9, 125.6, 125.3, 124.8, 124.7, 123.9, 116.1, 46.0, 41.0, 34.5, 30.5; HRMS (ESI): m/z calcd for C$_{28}$H$_{33}$O [M+H]$^+$: 385.2531; found: 385.2515.

2,6-Di-tert-butyl-4-(1-(4-nitrophenyl)but-3-en-1-yl)phenol (3u): Yellow oil; yield 97% (37 mg); R$_f$ = 0.5 (5% EtOAc in hexane); FT-IR 3642, 2954, 2927, 2854 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 8.15 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 6.99 (s, 2H), 5.68 (ddt, J = 17.0, 10.2, 6.8 Hz, 1H), 5.11 (s, 1H), 5.05–5.01 (m, 1H), 4.99–4.96 (m, 1H), 4.04 (t, J = 8.2 Hz, 1H), 2.87–2.74 (m, 2H), 1.41 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 153.0, 152.6, 146.4, 136.3,
136.1, 133.5, 129.0, 124.3, 123.8, 117.0, 51.2, 40.3, 34.5, 30.4; HRMS (ESI): \(m/z \) calcd for \(\text{C}_{24}\text{H}_{30}\text{NO}_{3} \) [M-H\(^+\)]: 380.2225; found: 380.2218.

Methyl 4-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)but-3-en-1-yl)benzoate (3v): Yellow oil; yield 89\% (35.1 mg); \(R_f = 0.4 \) (5\% EtOAc in hexane); FT-IR 3642, 2954, 2923, 2873, 1723 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.96 \) (d, \(J = 8.3 \) Hz, 2H), 7.31 (d, \(J = 8.2 \) Hz, 2H), 7.01 (s, 2H), 5.69 (ddt, \(J = 17.0, 10.2, 6.9 \) Hz, 1H), 5.07 (s, 1H), 5.05–5.00 (m, 1H), 4.96–4.93 (m, 1H), 3.98 (t, \(J = 7.8 \) Hz, 1H), 3.89 (s, 3H), 2.79 (t, \(J = 7.0 \) Hz, 2H), 1.40 (s, 18H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 167.3, 152.3, 150.6, 136.9, 135.8, 134.4, 129.8, 129.8, 128.2, 128.0, 124.4, 116.5, 52.1,51.3, 40.4, 34.5, 30.4; HRMS (ESI): \(m/z \) calcd for \(\text{C}_{26}\text{H}_{35}\text{O}_3 \) [M+H\(^+\)]: 395.2587; found: 395.2575.

2,6-Dimethyl-4-(1-phenylbut-3-en-1-yl)phenol (3x): Yellow oil; yield 50\% (12.6 mg); \(R_f = 0.2 \) (5\% EtOAc in hexane); FT-IR 3569, 3027, 2923, 2854 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.29–7.22 \) (m, 4H), 7.18–7.14 (m, 1H), 6.91 (s, 2H), 5.72 (ddt, \(J = 17.0, 10.2, 6.9 \) Hz, 1H), 5.05–5.00 (m, 1H), 4.95–4.92 (m, 1H), 4.64 (s, 1H), 3.93 (t, \(J = 7.9 \) Hz, 1H), 3.11 (sept, \(J = 6.8 \) Hz, 2H), 2.80–2.76 (m, 2H), 1.24 (d, \(J = 2.9 \) Hz, 6H), 1.22 (d, \(J = 2.8 \) Hz, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 148.4, 145.3, 137.4, 136.4, 133.5, 128.4, 128.0, 126.1, 123.0, 116.1, 51.2, 40.7, 27.5, 22.9; HRMS (ESI): \(m/z \) calcd for \(\text{C}_{22}\text{H}_{29}\text{O} \) [M+H\(^+\)]: 309.2219; found: 309.2207.
127.9, 126.1, 122.9, 116.2, 50.7, 40.3, 16.2; HRMS (ESI): \(m/z \) calcd for \(\text{C}_{18}\text{H}_{19}\text{ONa} \) [M+Na]^+: 275.1414; found: 275.1405.

2,6-Di-tert-butyl-4-(1-(4-methoxyphenyl)-3-(4-(2-phenylpropan-2-yl)phenyl)but-3-en-1-yl)phenol (4a): Yellow oil; yield 72% (40.3 mg); \(R_f = 0.5 \) (5% EtOAc in hexane); FT-IR 3642, 2961, 2915, 2881 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.32–7.17 \) (m, 9H), 7.12 (d, \(J = 8.5 \) Hz, 2H), 6.94 (s, 2H), 6.81 (d, \(J = 8.6 \) Hz, 2H), 5.13 (s, 1H), 5.02 (s, 1H), 4.80 (s, 1H), 3.98 (t, \(J = 7.8 \) Hz, 1H), 3.78 (s, 3H), 3.18 (d, \(J = 7.8 \) Hz, 2H), 1.71 (s, 6H), 1.40 (s, 18H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 157.8, 151.9, 150.7, 149.8, 146.5, 138.6, 137.3, 135.6, 135.4, 129.1, 128.1, 126.9, 126.8, 126.1, 125.8, 124.6, 114.2, 113.6, 55.3, 48.7, 42.9, 42.5, 34.5, 30.9, 30.5; HRMS (ESI): \(m/z \) calcd for \(\text{C}_{40}\text{H}_{47}\text{O}_2 \) [M-H]^+: 559.3575; found: 559.3553.

2,6-Di-tert-butyl-4-(1-(4-methoxyphenyl)-3-((2-phenylethynyl)phenyl)but-3-en-1-yl)phenol (4b): Yellow oil; yield 85% (46.1 mg); \(R_f = 0.5 \) (5% EtOAc in hexane); FT-IR 3641, 2957, 2914, 2880 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.55–7.52 \) (m, 1H), 7.40–7.37 (m, 2H), 7.33–7.31 (m, 3H), 7.25–7.18 (m, 2H), 7.13 (d, \(J = 8.6 \) Hz, 2H), 6.95 (s, 2H), 6.91–6.89 (m, 1H), 6.76 (d, \(J = 8.6 \) Hz, 2H), 5.16 (s, 1H), 5.07 (s, 1H), 4.99 (s, 1H), 3.86 (t, \(J = 7.8 \) Hz, 1H), 3.73 (s, 3H), 3.50–3.37 (m, 2H), 1.36 (s, 18H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 157.7, 151.9, 150.7, 149.8, 146.5, 138.6, 137.3, 135.6, 135.4, 129.1, 128.1, 126.9, 126.8, 126.1, 125.8, 124.6, 114.2, 113.6, 55.3, 48.7, 42.9, 42.5, 34.5, 30.9, 30.5; HRMS (ESI): \(m/z \) calcd for \(\text{C}_{39}\text{H}_{41}\text{O}_2 \) [M-H]^+: 541.3106; found: 541.3120.

4-(3-((1,1'-Biphenyl)-4-yl)-1-(4-methoxyphenyl)but-3-en-1-yl)-2,6-di-tert-butylphenol (4c): Yellow oil; yield 77% (39.9 mg); \(R_f = 0.5 \) (5% EtOAc in hexane); FT-IR 3638, 2961, 2923, 2877 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.63–7.61 \) (m, 2H), 7.55 (d, \(J = 8.4 \) Hz, 2H), 7.47–7.44 (m, 2H), 7.39–7.33 (m, 3H), 7.11 (d, \(J = 8.6 \) Hz, 2H), 6.96 (s, 2H), 6.83–6.79 (m, 2H), 5.18 (d, \(J = 7.8 \) Hz, 1H), 3.98 (t, \(J = 7.8 \) Hz, 1H), 3.78 (s, 3H), 3.18 (d, \(J = 7.8 \) Hz, 2H), 1.71 (s, 6H), 1.40 (s, 18H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 157.9, 151.9, 150.7, 149.8, 146.5, 138.6, 137.3, 135.6, 135.4, 129.1, 128.1, 126.9, 126.8, 126.1, 125.8, 124.6, 114.2, 113.6, 92.8, 89.3, 55.2, 49.2, 43.7, 34.4, 30.4; HRMS (ESI): \(m/z \) calcd for \(\text{C}_{39}\text{H}_{41}\text{O}_2 \) [M-H]^+: 541.3106; found: 541.3120.
= 1.2 Hz, 1H), 5.02 (s, 1H), 4.86 (s, 1H), 3.96 (t, \(J = 8.0 \) Hz, 1H), 3.78 (s, 3H), 3.27–3.16 (m, 2H), 1.39 (s, 18H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 157.8, 152.0, 146.5, 140.9, 140.4, 140.1, 137.3, 135.6, 135.5, 129.1, 128.9, 127.4, 127.1, 127.04, 127.02, 124.5, 114.9, 113.7, 55.3, 48.8, 42.6, 34.5, 30.5; HRMS (ESI): \(m/z \) calcd for C\(_{37}\)H\(_{41}\)O\(_2\) [M-H]\(^+\): 517.3106; found: 517.3085.

2,6-Di-tert-butyl-4-(1-(4-methoxyphenyl)-2-phenylbut-3-en-1-yl)phenol (4d): Yellow oil; yield 79% (34.9 mg); \(R_f = 0.6 \) (5% EtOAc in hexane); FT-IR 3642, 2961, 2919, 2873 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.27 \) (d, \(J = 9.2 \) Hz, 2H major), 7.18–6.98 (m, 9H major & minor), 6.86 (d, \(J = 8.7 \) Hz, 2H major), 6.74 (s, 2H major), 6.63 (d, \(J = 8.8 \) Hz, 1H minor), 6.02–5.88 (m, 1.5H major & minor), 5.01 (s, 0.5H minor), 4.97–4.89 (m, 2.5H major & minor), 4.86–4.81 (m, 0.5H minor), 4.85 (s, 1H major), 4.15–3.93 (m, 3H major & minor), 3.79 (s, 3H major), 3.68 (s, 1.5H minor), 1.42 (s, 9H minor), 1.27 (s, 18H major); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 157.9 \) (major), 157.4 (minor), 152.0 (minor), 151.6 (major), 143.7 (major), 143.5 (minor), 141.5 (minor), 141.0 (major), 136.5 (minor), 135.9 (major), 135.4 (minor), 135.0 (major), 133.9 (major), 132.4 (minor), 129.8 (major), 129.2 (minor), 128.6 (minor) 128.5 (major), 128.2 (minor), 128.1 (major), 126.0 (minor), 125.9 (major), 125.3 (minor), 125.1 (major), 116.0 (major), 115.6 (minor), 113.7 (major), 113.4 (minor), 56.7 (major), 56.5 (minor), 55.8 (major), 55.5 (minor), 55.3 (major), 55.2 (minor), 34.5 (minor), 34.3 (major), 30.5 (minor), 30.3 (major); HRMS (ESI): \(m/z \) calcd for C\(_{31}\)H\(_{37}\)O\(_2\) [M-H]\(^+\): 441.2793; found: 441.2776.

2,6-Di-tert-butyl-4-(1-(4-methoxyphenyl)-3-(naphthalen-2-yl)but-3-en-1-yl)phenol (4e): Yellow oil; yield 71% (36.9 mg); \(R_f = 0.5 \) (5% EtOAc in hexane); FT-IR 3638, 2961, 2873, 3061; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.84–7.78 \) (m, 3H), 7.73 (s, 1H), 7.49–7.44 (m, 3H), 7.09 (d, \(J = 8.6 \) Hz, 2H), 6.95 (s, 2H), 6.80 (d, \(J = 8.6 \) Hz), 5.24 (d, \(J = 1.1 \) Hz, 1H), 5.02 (s, 1H), 4.93 (s, 1H), 3.96 (t, \(J = 8.2 \) Hz, 1H), 3.77 (s, 3H), 3.36–3.23 (m, 2H), 1.38 (s, 18H); \(^{13}\)C NMR (100
MHz, CDCl$_3$) δ = 157.8, 152.0, 146.9, 138.8, 137.2, 135.6, 135.5, 133.5, 132.9, 129.1, 128.3, 127.9, 127.7, 126.2, 125.9, 125.3, 125.2, 124.5, 115.5, 113.7, 55.3, 48.8, 42.8, 34.5, 30.5; HRMS (ESI): m/z calcd for C$_{35}$H$_{39}$O$_2$ [M-H]$^+$: 491.2949; found: 491.2932.

2,6-Di-tert-butyl-4-(1-(4-methoxyphenyl)-3-(quinolin-6-yl)but-3-en-1-yl)phenol (4f): Yellow oil; yield 20% (9.8 mg); R$_f$ = 0.2 (20% EtOAc in hexane); FT-IR 3638, 2961, 2927, 2858 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 8.89 (d, J = 3.0 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.70–7.67 (m, 2H), 7.40 (dd, J = 8.2, 4.2 Hz, 1H), 7.08 (d, J = 8.6 Hz, 2H), 6.94 (s, 2H), 6.79 (d, J = 8.5 Hz, 2H), 5.27 (s, 1H), 5.02 (s, 1H), 5.00 (s, 1H), 3.93 (t, J = 7.9 Hz, 1H), 3.77 (s, 3H), 3.35–3.24 (m, 2H), 1.36 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 157.9, 152.1, 150.2, 147.7, 146.4, 139.7, 137.1, 136.5, 135.6, 135.4, 129.2, 129.0, 128.9, 128.3, 124.9, 124.5, 121.4, 116.4, 113.7, 55.3, 49.0, 42.7, 34.5, 30.5; HRMS (ESI): m/z calcd for C$_{34}$H$_{40}$NO$_2$ [M+H]$^+$: 494.3060; found: 494.3042.

Methyl 3-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-(4-methoxyphenyl)but-1-en-2-yl)-2-naphthoate (4g): Yellow soild; yield 80% (43.8 mg); R$_f$ = 0.2 (10% EtOAc in hexane); M.P. 148-150°C; FT-IR 3634, 2955, 2873, 2834 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ = 8.41 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.56–7.48 (m, 2H), 7.15 (s, 1H), 7.10 (d, J = 8.6 Hz, 2H), 6.91 (s, 2H), 6.77 (d, J = 8.7 Hz, 2H), 5.13 (d, J = 1.2 Hz, 1H), 5.00 (d, J = 1.7 Hz, 1H), 4.96 (s, 1H), 3.89 (s, 3H), 3.78 (t, J = 8.0 Hz, 1H), 3.74 (s, 3H), 3.16 (d, J = 8.0 Hz, 2H), 1.34 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 168.2, 157.8, 151.9, 149.7, 140.4, 137.3, 135.4, 135.2, 134.6, 131.6, 131.4, 129.7, 129.0, 128.8, 128.2, 127.8, 127.4, 126.5, 124.5, 115.5, 113.7, 55.3, 52.3, 50.0, 44.2, 34.4, 30.4; HRMS (ESI): m/z calcd for C$_{37}$H$_{41}$O$_4$ [M-H]$^+$: 549.3004; found: 549.2984.
4-(1-(2-Bromophenyl)-3-(4-(tert-butyl)phenyl)but-3-en-1-yl)-2,6-di-tert-butylphenol (4h): Yellow oil; yield 72% (39.3 mg); $R_f = 0.6$ (5% EtOAc in hexane); FT-IR 3641, 2961, 2911, 2872.0 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.50$ (dd, $J = 7.9$, 0.8 Hz, 1H), 7.36–7.29 (m, 3H), 7.26–7.22 (m, 3H), 7.04 (s, 2H), 7.04–6.99 (m, 1H), 5.17 (s, 1H), 5.03 (s, 1H), 4.90 (s, 1H), 4.66 (t, $J = 7.8$ Hz, 1H), 3.27–3.15 (m, 2H), 1.39 (s, 18H), 1.33 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) $\delta = 152.1, 150.3, 146.4, 144.1, 138.7, 135.4, 133.7, 133.0, 128.9, 127.51, 127.50, 126.1, 125.4, 125.1, 125.0, 114.0, 47.7, 41.3, 34.6, 34.5, 31.5, 30.5; HRMS (ESI): m/z calcd for C$_{34}$H$_{42}$BrO$[M-H]^+$: 545.2418; found: 545.2402.

2,6-Di-tert-butyl-4-(5,6-dihydro-2H-benzo[b]oxocin-6-yl)phenol (5): The second generation Grubbs catalyst (9 mg, 0.01 mmol) was added to a solution of 3d (40 mg, 0.1 mmol) in CH$_2$Cl$_2$ (1.5 mL) under inert atmosphere and the resultant mixture was stirred at 40 °C until 3d was completely consumed (by T.L.C.). The solvent was removed under reduced pressure and the residue was directly loaded on a silica gel column and purified using 0.5-1% ethyl acetate/hexane mixture as an eluent to get the pure product 5. Yellow oil; yield 54% (19.7 mg); $R_f = 0.2$ (5% EtOAc in hexane); FT-IR 3638, 2958, 2926, 2873 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.20–7.15$ (m, 1H), 7.08–7.05 (m, 2H), 7.07 (s, 2H), 7.03–6.99 (m, 1H), 5.92–5.84 (m, 1H), 5.42–5.38 (m, 1H), 5.05–5.01 (m, 1H), 5.02 (s, 1H), 4.45 (dd, $J = 15.6$, 4.6 Hz, 1H); 4.07 (dd, $J = 12.3$, 5.9 Hz, 1H), 3.56–3.47 (m, 1H), 2.49–2.43 (m, 1H), 1.39 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) $\delta = 157.0, 152.1, 137.5, 137.4, 135.8, 132.1, 131.9, 127.8, 126.8, 124.8, 124.4, 123.3, 73.5, 52.2, 37.0, 34.5, 30.5 ppm; HRMS (ESI): m/z calcd for C$_{25}$H$_{31}$O$_2$ [M-H]$^+$: 363.2323; found: 363.2311.
References:

1H NMR Spectrum of 3

13C NMR Spectrum of 3
1H NMR Spectrum of 3a

13C NMR Spectrum of 3a
1H NMR Spectrum of 3b

13C NMR Spectrum of 3b
1H NMR Spectrum of 3c

13C NMR Spectrum of 3c
1H NMR Spectrum of 3d

13C NMR Spectrum of 3d
1H NMR Spectrum of 3e

13C NMR Spectrum of 3e
1H NMR Spectrum of 3f

13C NMR Spectrum of 3f
13C NMR Spectrum of 3h

19F NMR Spectrum of 3h
19F NMR Spectrum of 3i

1H NMR Spectrum of 3j
13C NMR Spectrum of 3j

1H NMR Spectrum of 3k
1H NMR Spectrum of 3l

13C NMR Spectrum of 3l
1H NMR Spectrum of 3n

13C NMR Spectrum of 3n
1H NMR Spectrum of 3q

13C NMR Spectrum of 3q
1H NMR Spectrum of 3s

13C NMR Spectrum of 3s
1H NMR Spectrum of 3u

13C NMR Spectrum of 3u
1H NMR Spectrum of 3v

13C NMR Spectrum of 3v
1H NMR Spectrum of 3w

13C NMR Spectrum of 3w
$\textbf{1^H NMR Spectrum of 3x}$

$\textbf{13^C NMR Spectrum of 3x}$
1H NMR Spectrum of 4a

13C NMR Spectrum of 4a
1H NMR Spectrum of 4b

13C NMR Spectrum of 4b
1H NMR Spectrum of 4c

13C NMR Spectrum of 4c
1H NMR Spectrum of 4d

13C NMR Spectrum of 4d
1H NMR Spectrum of 4e

13C NMR Spectrum of 4e
1H NMR Spectrum of 4f

13C NMR Spectrum of 4f
1H NMR Spectrum of 4g

13C NMR Spectrum of 4g
1H NMR Spectrum of 4h

13C NMR Spectrum of 4h
^{1}H NMR Spectrum of 5

^{13}C NMR Spectrum of 5