Supporting Information

Limonoids with diverse frameworks from stem barks of
Entandrophragma angolense and their bioactivities

Wen-Yan Zhang, Fa-Liang An, Miao-Miao Zhou, Meng-Han Chen, Kai-Li Jian, Olga
Quasie, Ming-Hua Yang, Jun Luo* and Ling-Yi Kong*

*State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China
Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China

Corresponding authors

* Jun Luo:

E-mail: luojun1981ly@163.com

Tel/Fax: +86-25-8327-1405

* Ling-Yi Kong:

E-mail: cpu_lykong@126.com

Tel/Fax: +86-25-8327-1405

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2016
Table of Contents:
1. Figure S1. ECD and UV spectra of 2 (in MeCN).
2. Figure S2. Experimental ECD of 3, 7-11 (in MeCN).
3. Figure S3. ECD and UV spectra of 12. (in MeCN).
4. Figure S4. ECD and UV spectra of 15. (in MeCN).
5. Figure S5. HRESIMS spectrum of 1.
6. Figure S6. 1H NMR spectrum of 1 in CDCl3.
7. Figure S7. 13C NMR spectrum of 1 in CDCl3.
8. Figure S8. HSQC spectrum of 1 in CDCl3.
9. Figure S9. HMBC spectrum of 1 in CDCl3.
10. Figure S10. ROESY spectrum of 1 in CDCl3.
11. Figure S11. HRESIMS spectrum of 2.
12. Figure S12. 1H NMR spectrum of 2 in CDCl3.
13. Figure S13. 13C NMR spectrum of 2 in CDCl3.
14. Figure S14. HSQC spectrum of 2 in CDCl3.
15. Figure S15. HMBC spectrum of 2 in CDCl3.
16. Figure S16. ROESY spectrum of 2 in CDCl3.
17. Figure S17. HRESIMS spectrum of 3.
18. Figure S18. 1H NMR spectrum of 3 in CDCl3.
19. Figure S19. 13C NMR spectrum of 3 in CDCl3.
20. Figure S20. HSQC spectrum of 3 in CDCl3.
21. Figure S21. HMBC spectrum of 3 in CDCl3.
22. Figure S22. ROESY spectrum of 3 in CDCl3.
23. Figure S23. HRESIMS spectrum of 4.
24. Figure S24. 1H NMR spectrum of 4 in CDCl3.
25. Figure S25. 13C NMR spectrum of 4 in CDCl3.
26. Figure S26. HSQC spectrum of 4 in CDCl3.
27. Figure S27. HMBC spectrum of 4 in CDCl3.
28. Figure S28. ROESY spectrum of 4 in CDCl3.
29. Figure S29. HRESIMS spectrum of 5.
30. Figure S30. ¹H NMR spectrum of 5 in CDCl₃.
31. Figure S31. ¹³C NMR spectrum of 5 in CDCl₃.
32. Figure S32. HSQC spectrum of 5 in CDCl₃.
33. Figure S33. HMBC spectrum of 5 in CDCl₃.
34. Figure S34. ROESY spectrum of 5 in CDCl₃.
35. Figure S35. HRESIMS spectrum of 6.
36. Figure S36. ¹H NMR spectrum of 6 in CDCl₃.
37. Figure S37. ¹³C NMR spectrum of 6 in CDCl₃.
38. Figure S38. HSQC spectrum of 6 in CDCl₃.
39. Figure S39. HMBC spectrum of 6 in CDCl₃.
40. Figure S40. ROESY spectrum of 6 in CDCl₃.
41. Figure S41. HRESIMS spectrum of 7.
42. Figure S42. ¹H NMR spectrum of 7 in CDCl₃.
43. Figure S43. ¹³C NMR spectrum of 7 in CDCl₃.
44. Figure S44. HSQC spectrum of 7 in CDCl₃.
45. Figure S45. HMBC spectrum of 7 in CDCl₃.
46. Figure S46. ROESY spectrum of 7 in CDCl₃.
47. Figure S47. HRESIMS spectrum of 8.
48. Figure S48. ¹H NMR spectrum of 8 in CDCl₃.
49. Figure S49. ¹³C NMR spectrum of 8 in CDCl₃.
50. Figure S50. HSQC spectrum of 8 in CDCl₃.
51. Figure S51. HMBC spectrum of 8 in CDCl₃.
52. Figure S52. ROESY spectrum of 8 in CDCl₃.
53. Figure S53. HRESIMS spectrum of 9.
54. Figure S54. ¹H NMR spectrum of 9 in CDCl₃.
55. Figure S55. ¹³C NMR spectrum of 9 in CDCl₃.
56. Figure S56. HSQC spectrum of 9 in CDCl₃.
57. Figure S57. HMBC spectrum of 9 in CDCl₃.
58. Figure S58. ROESY spectrum of 9 in CDCl₃.
59. Figure S59. HRESIMS spectrum of 10.
60. Figure S60. 1H NMR spectrum of 10 in CDCl$_3$.
61. Figure S61. 13C NMR spectrum of 10 in CDCl$_3$.
62. Figure S62. HSQC spectrum of 10 in CDCl$_3$.
63. Figure S63. HMBC spectrum of 10 in CDCl$_3$.
64. Figure S64. ROESY spectrum of 10 in CDCl$_3$.
65. Figure S65. HRESIMS spectrum of 11.
66. Figure S66. 1H NMR spectrum of 11 in CD$_3$OD.
67. Figure S67. 13C NMR spectrum of 11 in CD$_3$OD.
68. Figure S68. HSQC spectrum of 11 in CD$_3$OD.
69. Figure S69. HMBC spectrum of 11 in CD$_3$OD.
70. Figure S70. ROESY spectrum of 11 in CD$_3$OD.
71. Figure S71. HRESIMS spectrum of 12.
72. Figure S72. 1H NMR spectrum of 12 in CDCl$_3$.
73. Figure S73. 13C NMR spectrum of 12 in CDCl$_3$.
74. Figure S74. HSQC spectrum of 12 in CDCl$_3$.
75. Figure S75. HMBC spectrum of 12 in CDCl$_3$.
76. Figure S76. ROESY spectrum of 12 in CDCl$_3$.
77. Figure S77. HRESIMS spectrum of 13.
78. Figure S78. 1H NMR spectrum of 13 in CDCl$_3$.
79. Figure S79. 13C NMR spectrum of 13 in CDCl$_3$.
80. Figure S80. HSQC spectrum of 13 in CDCl$_3$.
81. Figure S81. HMBC spectrum of 13 in CDCl$_3$.
82. Figure S82. ROESY spectrum of 13 in CDCl$_3$.
83. Figure S83. HRESIMS spectrum of 14.
84. Figure S84. 1H NMR spectrum of 14 in CDCl$_3$.
85. Figure S85. 13C NMR spectrum of 14 in CDCl$_3$.
86. Figure S86. HSQC spectrum of 14 in CDCl$_3$.
87. Figure S87. HMBC spectrum of 14 in CDCl$_3$.
88. Figure S88. ROESY spectrum of 14 in CDCl$_3$.
89. Figure S89. HRESIMS spectrum of 15.
90. Figure S90. 1H NMR spectrum of 15 in CDCl$_3$.
91. Figure S91. 13C NMR spectrum of 15 in CDCl$_3$.
92. Figure S92. HSQC spectrum of 15 in CDCl$_3$.
93. Figure S93. HMBC spectrum of 15 in CDCl$_3$.
94. Figure S94. ROESY spectrum of 15 in CDCl$_3$.
95. Figure S95. HRESIMS spectrum of 16.
96. Figure S96. 1H NMR spectrum of 16 in CDCl$_3$.
97. Figure S97. 13C NMR spectrum of 16 in CDCl$_3$.
98. Figure S98. HSQC spectrum of 16 in CDCl$_3$.
99. Figure S99. HMBC spectrum of 16 in CDCl$_3$.
100. Figure S100. ROESY spectrum of 16 in CDCl$_3$.
Figure S1. ECD and UV spectra of 2 (in MeCN).

Figure S2. Experimental ECD of 3, 7-11 (in MeCN).
Figure S3. ECD and UV spectra of 12 (in MeCN).

Figure S4. ECD and UV spectra of 15 (in MeCN).
Figure S5. HRESIMS spectrum of 1.

Figure S6. 1H NMR spectrum of 1 in CDCl$_3$.
Figure S7. 13C NMR spectrum of 1 in CDCl$_3$.

Figure S8. HSQC spectrum of 1 in CDCl$_3$.
Figure S9. HMBC spectrum of 1 in CDCl₃.

Figure S10. ROESY spectrum of 1 in CDCl₃.
Figure S11. HRESIMS spectrum of 2.

Figure S12. 1H NMR spectrum of 2 in CDCl$_3$.
Figure S13. 13C NMR spectrum of 2 in CDCl$_3$.

Figure S14. HSQC spectrum of 2 in CDCl$_3$.
Figure S15. HMBC spectrum of 2 in CDCl₃.

Figure S16. ROESY spectrum of 2 in CDCl₃.
Figure S17. HRESIMS spectrum of 3.

<table>
<thead>
<tr>
<th>Target m/z</th>
<th>509.2144</th>
<th>Result type:</th>
<th>Positive ions</th>
<th>Species</th>
<th>[M+Na]⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td>C (0-80); H (6-120); O (0-30); Na (0-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td>C27H34NaO8</td>
<td>Calculated m/z</td>
<td>509.2146</td>
<td>PPM Error</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Figure S18. ¹H NMR spectrum of 3 in CDCl₃.
Figure S19. 13C NMR spectrum of 3 in CDCl$_3$.

Figure S20. HSQC spectrum of 3 in CDCl$_3$.
Figure S21. HMBC spectrum of 3 in CDCl₃.

Figure S22. ROESY spectrum of 3 in CDCl₃.
Figure S23. HRESIMS spectrum of 4.

<table>
<thead>
<tr>
<th>Target m/z:</th>
<th>599.2143</th>
<th>Result type:</th>
<th>Positive ions</th>
<th>Species</th>
<th>[M+Na]^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td>C (0-80); H (0-120); O (0-30); Na (0-5)</td>
<td>Ion Formula</td>
<td>Calculated m/z</td>
<td>599.2146</td>
<td>PPM Error</td>
</tr>
<tr>
<td></td>
<td>C27H34NaO8</td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
</tr>
</tbody>
</table>
Figure S25. 13C NMR spectrum of 4 in CDCl$_3$.

Figure S26. HSQC spectrum of 4 in CDCl$_3$.
Figure S27. HMBC spectrum of 4 in CDCl$_3$.

Figure S28. ROESY spectrum of 4 in CDCl$_3$.
Figure S29. HRESIMS spectrum of 5.

<table>
<thead>
<tr>
<th>Target m/z</th>
<th>Result type</th>
<th>Positive ions</th>
<th>Species:</th>
<th>[M+NH₄]⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C (0-80); H (0-120); O (0-30); N(0-10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ion Formula</th>
<th>Calculated m/z</th>
<th>PPM Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂₈H₄₀N₁₀₉</td>
<td>534.2698</td>
<td>-0.46</td>
</tr>
</tbody>
</table>

Figure S30. ¹H NMR spectrum of 5 in CDCl₃.
Figure S31. 13C NMR spectrum of 5 in CDCl$_3$.

Figure S32. HSQC spectrum of 5 in CDCl$_3$.
Figure S33. HMBC spectrum of 5 in CDCl₃.

Figure S34. ROESY spectrum of 5 in CDCl₃.
Figure S35. HRESIMS spectrum of 6.

Figure S36. 1H NMR spectrum of 6 in CDCl$_3$.
Figure S37. 13C NMR spectrum of 6 in CDCl$_3$.

Figure S38. HSQC spectrum of 6 in CDCl$_3$.
Figure S39. HMBC spectrum of 6 in CDCl₃.

Figure S40. ROESY spectrum of 6 in CDCl₃.
Figure S41. HRESIMS spectrum of 7.

<table>
<thead>
<tr>
<th>Target m/z: 550.3009</th>
<th>Result type: Positive ions</th>
<th>Species: [M+NH4]+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, H, O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula:</td>
<td>C29H44NO9</td>
<td>Calculated m/z: 550.3011</td>
</tr>
</tbody>
</table>

Figure S42. 1H NMR spectrum of 7 in CDCl₃.
Figure S43. 13C NMR spectrum of 7 in CDCl$_3$.

Figure S44. HSQC spectrum of 7 in CDCl$_3$.
Figure S45. HMBC spectrum of 7 in CDCl₃.

Figure S46. ROESY spectrum of 7 in CDCl₃.
Figure S47. HRESIMS spectrum of 8.

Figure S48. 1H NMR spectrum of 8 in CDCl$_3$
Figure S49. 13C NMR spectrum of 8 in CDCl$_3$

Figure S50. HSQC spectrum of 8 in CDCl$_3$
Figure S51. HMBC spectrum of 8 in CDCl₃.

Figure S52. ROESY spectrum of 8 in CDCl₃.
Figure S53. HRESIMS spectrum of 9

<table>
<thead>
<tr>
<th>Target m/z</th>
<th>Result type</th>
<th>Positive ions</th>
<th>Species</th>
<th>[M+NH₄]⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>552.2805</td>
<td>C (0-80); H (0-120); O (0-30); N(0-10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td>Calculated m/z</td>
<td>PPM Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄NO₁₀</td>
<td>552.2803</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S54. ¹H NMR spectrum of 9 in CDCl₃
Figure S55. 13C NMR spectrum of 9 in CDCl$_3$.

Figure S56. HSQC spectrum of 9 in CDCl$_3$.
Figure S57. HMBC spectrum of 9 in CDCl₃.

Figure S58. ROESY spectrum of 9 in CDCl₃.
Figure S59. HRESIMS spectrum of 10.

Figure S60. 1H NMR spectrum of 10 in CDCl₃.
Figure S61. 13C NMR spectrum of 10 in CDCl$_3$

Figure S62. HSQC spectrum of 10 in CDCl$_3$
Figure S63. HMBC spectrum of 10 in CDCl₃

Figure S64. ROESY spectrum of 10 in CDCl₃
Figure S65. HRESIMS spectrum of 11.

Figure S66. 1H NMR spectrum of 11 in CD$_3$OD
Figure S67. 13C NMR spectrum of 11 in CD$_3$OD

Figure S68. HSQC spectrum of 11 in CD$_3$OD
Figure S69. HMBC spectrum of 11 in CD$_3$OD

Figure S70. ROESY spectrum of 11 in CD$_3$OD
Figure S71. HRESIMS spectrum of 12

Figure S72. 1H NMR spectrum of 12 in CDCl$_3$
Figure S73. 13C NMR spectrum of 12 in CDCl$_3$

Figure S74. HSQC spectrum of 12 in CDCl$_3$
Figure S75. HMBC spectrum of 12 in CDCl₃.

Figure S76. ROESY spectrum of 12 in CDCl₃.
Figure S77. HRESIMS spectrum of 13

Figure S78. 1H NMR spectrum of 13 in CDCl$_3$
Figure S79. 13C NMR spectrum of 13 in CDCl$_3$

Figure S80. HSQC spectrum of 13 in CDCl$_3$
Figure S81. HMBC spectrum of 13 in CDCl₃

Figure S82. ROESY spectrum of 13 in CDCl₃
Figure S83. HRESIMS spectrum of 14

<table>
<thead>
<tr>
<th>Target m/z</th>
<th>562.3016</th>
<th>Result type:</th>
<th>Positive ions</th>
<th>Species:</th>
<th>[M+NH4]^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td></td>
<td>Calculated m/z</td>
<td>562.3011</td>
<td>PPM Error</td>
<td>-0.95</td>
</tr>
</tbody>
</table>

C30H4NO9

Figure S84. ^1H NMR spectrum of 14 in CDCl₃
Figure S85. 13C NMR spectrum of 14 in CDCl$_3$

Figure S86. HSQC spectrum of 14 in CDCl$_3$
Figure S87. HMBC spectrum of 14 in CDCl$_3$.

Figure S88. ROESY spectrum of 14 in CDCl$_3$.
Figure S89. HRESIMS spectrum of 15

<table>
<thead>
<tr>
<th>Target m/z</th>
<th>Result type</th>
<th>Positive ions</th>
<th>Species</th>
<th>[M+H]^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>527.2636</td>
<td>Positive ions</td>
<td>C (0-80); H (0-120); O (0-30); N(0-10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elements:

<table>
<thead>
<tr>
<th>Ion Formula</th>
<th>Calculated m/z</th>
<th>PPM Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C30H39O8</td>
<td>527.2639</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Figure S90. 1H NMR spectrum of 15 in CDCl$_3$
Figure S91. 13C NMR spectrum of 15 in CDCl$_3$

Figure S92. HSQC spectrum of 15 in CDCl$_3$
Figure S93. HMBC spectrum of 15 in CDCl₃

Figure S94. ROESY spectrum of 15 in CDCl₃
Figure S95. HRESIMS spectrum of 16

<table>
<thead>
<tr>
<th>Target m/z</th>
<th>Result type</th>
<th>Positive ions</th>
<th>Species</th>
<th>[M+Na]$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>639.3136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elements:
C (0-80); H (0-120); O (0-30); Na (0-5)

Ion Formula
C$_{34}$H$_{48}$NaO$_{10}$

Calculated m/z
639.3140

PPM Error
0.64

Figure S96. 1H NMR spectrum of 16 in CDCl$_3$
Figure S97. 13C NMR spectrum of 16 in CDCl$_3$

Figure S98. HSQC spectrum of 16 in CDCl$_3$
Figure S99. HMBC spectrum of 16 in CDCl₃

Figure S100. ROESY spectrum of 16 in CDCl₃