Investigation of adsorption and photocatalytic activities of in situ
cetyltrimethylammonium bromide-modified Bi/BiOCl
heterojunction photocatalyst for organic contaminants removal

Wentao Li a, c, Feng Xiao a, *, Hang Su b, Dongsheng Wang a, Xiaofang Yang a

a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-
Environmental Sciences, University of Chinese Academy of Sciences, No.18, Shuangqing Road,
Haidian District, Beijing, 100085, China

b School of Environmental and Municipal Engineering, Xi'an University of Architecture and
Technology, Xi'an, 710055, China.

c University Chinese Academy of Sciences, Beijing 100085, China

*Corresponding Author. Tel: +86 10 62849 138; Fax: +86 10 6284 9138

E-mail address: fengxiao@rcees.ac.cn (F. Xiao)
Figure S1. Standard XRD peaks of BiOCl structure (JCPDS 06-0249), Bi (JCPDS 44-1246) and XRD patterns of CTAB and Bi/BiOCl-a.
Figure S2. SEM of Bi/BiOCl and BiOCl: BiOCl (a, b); Bi/BiOCl-a (c, d); Bi/BiOCl-b (e, f); Bi/BiOCl-c (g, h)
Figure S3. SEM(a) and EDS(b) mapping of Bi/BiOCl-a
Figure S4. N₂ adsorption-desorption isotherms(a) and pore size distribution(b) of Bi/BiOCl-a, b, c
Figure S5. Schematic diagram of the possible reaction mechanism of dyes removal on the Bi/BiOCl with CTAB under visible light irradiation