Supporting Information

Preparation of organic mechanochromic fluorophores with simple structures and promising mechanochromic luminescence properties

Gaocan Li,* Yangyang Xu, Weihua Zhuang, and Yunbing Wang*

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China

E-mail: gaocanli@scu.edu.cn; yunbing.wang@scu.edu.cn
Table of Contents

I. General remarks ... S3

II. Synthesis of phosphonium salts .. S3

III. Physical and photophysical properties of phosphonium salts S8

IV. X-Ray structure determination .. S10

V. Fluorescence decay profiles of 1·PF$_6$ in different states .. S13

VI. Excitation of 1·PF$_6$ in different states .. S13

VII. References ... S14

VIII. Copies of 1H, 13C, 19F and 31P NMR spectra .. S15
I. General remarks

NMR spectra were obtained on a Bruker AV II-400 (Germany). The 1H NMR chemical shifts were measured relative to DMSO-d_6 or CDCl$_3$ as the internal reference (DMSO-d_6: $\delta = 2.50$ ppm; CDCl$_3$: $\delta = 7.26$ ppm). The 13C NMR chemical shifts were given using DMSO-d_6 or CDCl$_3$ as the internal standard (DMSO-d_6: $\delta = 39.52$ ppm; CDCl$_3$: $\delta = 77.16$ ppm). Fluorescence emission spectra were obtained using a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer (Japan). Absorption spectra were obtained on a HITACHI U-2910 spectrometer (Japan). The ESI-TOF mass spectra were recorded with a Shimadzu LCMS-IT-TOF instrument (Japan). Fluorescence lifetime data were determined on a HORIBA TEMPRO-01 instrument (Japan). Differential scanning calorimetry (DSC) data was performed using a TA instrument DSC-Q200 1474 (USA) with rate = 5 °C/min and range = 40 to 230 °C. All the tests were performed in Sichuan University, Chengdu.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. DMSO-d_6 and CDCl$_3$ were purchased from Alfa. Other reagents and solvents were obtained from Chengdu Kelong Chemical Reagent Factory. Silica gel (size: 45-75 µm, relative surface area: 600-800 m2/g) was purchased from Qingdao Haiyang Chemical Factory. The 1-(bromomethyl)pyrene were prepared according to the literature procedures.[1]

II. Synthesis of phosphonium salts

General procedure for the synthesis of phosphonium salts: A Schlenk tube with a magnetic stir bar was charged with bromomethylarene (2.0 mmol), trisubstituted phosphine (3.0 mmol) and EtOAc (10.0 mL) under N$_2$. The reaction system was then evacuated and backfilled with N$_2$ for twice. After stirring at 75 °C for 8 h, the precipitate was filtered, washed by EtOAc to get the target phosphonium salt with bromide as the anion.

General procedure for the anion exchange: A Schlenk tube with a magnetic stir bar was charged with phosphonium bromide (1.0 mmol), metal salt with the target anion (2.0 mmol), CH$_2$Cl$_2$ (10.0 mL) and deionized water (5.0 mL). The resulting mixture
was stirred at room temperature for 24 h. Then the organic phase was separated and the aqueous phase was extracted with CH$_2$Cl$_2$ for 3 times. The combined organic phases were dried over anhydrous Na$_2$SO$_4$ and concentrated. The residue was purified by column chromatography on silica gel (MeOH/CH$_2$Cl$_2$) to afford the desired product.

![Tributyl(pyren-1-ylmethyl)phosphonium bromide (1·Br)](image)

Tributyl(pyren-1-ylmethyl)phosphonium bromide (1·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol), tributylphosphine (0.75 mL, 3.0 mmol) and EtOAc (10.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH$_2$Cl$_2$ = 1/15, v/v) afforded 1·Br as a white solid (953.4 mg, 96% yield). 1H NMR (DMSO-d_6, 400 MHz): δ = 0.76 (t, J = 7.2 Hz, 9H), 1.23-1.39 (m, 12H), 2.24-2.32 (m, 6H), 4.69 (d, J = 15.6 Hz, 2H), 8.10-8.17 (m, 2H), 8.23 (dd, J = 8.8 Hz, J = 12.0 Hz, 2H), 8.34-8.40 (m, 4H), 8.64 (d, J = 9.2 Hz, 1H) ppm. 13C NMR (DMSO-d_6, 100 MHz): δ = 18.0, 18.5, 23.0 (d, J = 4.6 Hz), 23.7, 23.8, 123.8, 124.0 (d, J = 9.3 Hz), 124.1, 124.7 (d, J = 2.6 Hz), 125.6 (d, J = 3.1 Hz), 126.0, 126.2, 127.1, 127.7, 128.3, 128.6, 129.4 (d, J = 4.7 Hz), 129.9 (d, J = 5.1 Hz), 130.6, 131.1 (d, J = 3.4 Hz), 131.2 ppm. 31P NMR (DMSO-d_6, 162 MHz): δ = 34.36 ppm. HRMS (ESI$^+$): calcd for C$_{29}$H$_{38}$P [M]$^+$ 417.2706, found 417.2697. Elemental analysis calcd (%) for M+H$_2$O: C 67.57, H 7.82, found: C 67.83, H 8.06.

![Tributyl(pyren-1-ylmethyl)phosphonium bis((trifluoromethyl)sulfonyl)amide (1·NTf$_2$)](image)
Following the general procedure, **1·Br** (497.5 mg, 1.0 mmol) and LiNTf$_2$ (574.2 mg, 2.0 mmol) were used. Purification via column chromatography on silica gel (MeOH/CH$_2$Cl$_2$ = 1/20, v/v) afforded **1·NTf$_2$** as a white solid (674.2 mg, 97% yield).

1H NMR (DMSO-d_6, 400 MHz): $\delta = 0.78$ (t, $J = 7.2$ Hz, 9H), 1.25-1.40 (m, 12H), 2.20-2.28 (m, 6H), 4.62 (d, $J = 16.0$ Hz, 2H), 8.10-8.17 (m, 2H), 8.25 (dd, $J = 8.8$ Hz, $J = 14.0$ Hz, 2H), 8.37-8.41 (m, 4H), 8.58 (d, $J = 9.2$ Hz, 1H) ppm. 13C NMR (DMSO-d_6, 100 MHz): $\delta = 18.0, 18.4, 23.0$ (d, $J = 4.6$ Hz), 23.7, 23.8, 123.6 (d, $J = 2.0$ Hz), 123.8 (d, $J = 9.2$ Hz), 124.1, 124.8 (d, $J = 2.3$ Hz), 125.7 (d, $J = 3.5$ Hz), 126.0, 126.3, 127.1, 128.3, 128.6, 129.4 (d, $J = 3.2$ Hz), 129.8 (d, $J = 5.2$ Hz), 130.6, 131.1 (d, $J = 3.3$ Hz), 131.2 ppm. 19F NMR (DMSO-d_6, 376 MHz): $\delta = -78.72$ ppm. 31P NMR (DMSO-d_6, 162 MHz): $\delta = 34.40$ ppm. HRMS (ESI$^+$): calcd for C$_{29}$H$_{38}$P [M]$^+$ 417.2706, found 417.2707. Elemental analysis calcd (%) for M+H$_2$O: C 52.02, H 5.63, N 1.96, found: C 52.20, H 5.60, N 1.79.

[Diag 1]

Tributyl(pyren-1-ylmethyl)phosphonium hexafluorophosphate (1·PF$_6$)

Following the general procedure, **1·Br** (497.5 mg, 1.0 mmol) and KPF$_6$ (368.1 mg, 2.0 mmol) were used. Purification via column chromatography on silica gel (MeOH/CH$_2$Cl$_2$ = 1/20, v/v) afforded **1·PF$_6$** as a white solid (524.8 mg, 93% yield).

1H NMR (DMSO-d_6, 400 MHz): $\delta = 0.77$ (t, $J = 7.2$ Hz, 9H), 1.24-1.38 (m, 12H), 2.21-2.28 (m, 6H), 4.64 (d, $J = 15.6$ Hz, 2H), 8.11-8.15 (m, 2H), 8.23 (dd, $J = 8.8$ Hz, $J = 12.4$ Hz, 2H), 8.35-8.40 (m, 4H), 8.60 (d, $J = 9.2$ Hz, 1H) ppm. 13C NMR (DMSO-d_6, 100 MHz): $\delta = 18.0, 18.5, 23.0$ (d, $J = 4.5$ Hz), 23.7, 23.8, 123.7, 123.9 (d, $J = 9.4$ Hz), 124.1, 124.8 (d, $J = 2.6$ Hz), 125.7 (d, $J = 3.2$ Hz), 126.0, 126.3, 127.1, 127.7, 128.3, 128.6, 129.4 (d, $J = 4.9$ Hz), 129.9 (d, $J = 5.2$ Hz), 130.6, 131.1 (d, $J = 3.6$ Hz), 131.2 ppm. 19F NMR (DMSO-d_6, 376 MHz): $\delta = -69.15, -71.04$ ppm. 31P
NMR (DMSO-d_6, 162 MHz): $\delta = 34.38, -130.98, -135.37, -139.76, -144.15, -148.54, -152.94, -157.33$ ppm. HRMS (ESI$^+$): calcd for C$_{29}$H$_{38}$P [M]$^+$ 417.2706, found 417.2698. Elemental analysis calcd (%) for M+H$_2$O: C 60.00, H 6.94, found: C 60.77, H 6.60.

Tributyl(pyren-1-ylmethyl)phosphonium tetrafluoroborate (1·BF$_4$)

Following the general procedure, 1·Br (497.5 mg, 1.0 mmol) and NaBF$_4$ (219.6 mg, 2.0 mmol) were used. Purification via column chromatography on silica gel (MeOH/CH$_2$Cl$_2$ = 1/20, v/v) afforded 1·BF$_4$ as a white solid (454.8 mg, 90% yield).

1H NMR (DMSO-d_6, 400 MHz): $\delta = 0.78$ (t, $J = 7.2$ Hz, 9H), 1.24-1.41 (m, 12H), 2.20-2.28 (m, 6H), 4.62 (d, $J = 16.0$ Hz, 2H), 8.10-8.16 (m, 2H), 8.24 (dd, $J = 8.8$ Hz, $J = 12.4$ Hz, 2H), 8.36-8.41 (m, 4H), 8.58 (d, $J = 9.2$ Hz, 1H) ppm. 13C NMR (DMSO-d_6, 100 MHz): $\delta = 18.0, 18.5, 23.0$ (d, $J = 4.5$ Hz), 23.7, 23.8, 123.7 (d, $J = 1.7$ Hz), 123.8 (d, $J = 9.2$ Hz), 124.1, 124.8 (d, $J = 2.6$ Hz), 125.7 (d, $J = 3.2$ Hz), 126.0, 126.3, 127.1, 127.7, 128.3, 128.6, 129.4 (d, $J = 5.1$ Hz), 129.9 (d, $J = 5.1$ Hz), 130.6, 131.1 (d, $J = 3.4$ Hz), 131.2 ppm. 19F NMR (DMSO-d_6, 376 MHz): $\delta = -148.21$, -148.24 ppm. 31P NMR (DMSO-d_6, 162 MHz): $\delta = 34.40$ ppm. HRMS (ESI$^+$): calcd for C$_{29}$H$_{38}$P [M]$^+$ 417.2706, found 417.2696. Elemental analysis calcd (%) for M: C 69.06, H 7.59, found: C 68.59, H 6.90.

Tricyclohexyl(pyren-1-ylmethyl)phosphonium bromide (2·Br)
Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol),
tricyclohexylphosphine (840.6 mg, 3.0 mmol) and EtOAc (10.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/15, v/v) afforded 2·Br as a white solid (1.1310 g, 98% yield). ¹H NMR (DMSO- d₆, 400 MHz): δ = 1.13 (t, J = 12.4 Hz, 3H), 1.26 (q, J = 12.4 Hz, 6H), 1.45 (q, J = 12.4 Hz, 6H), 1.58-1.70 (m, 9H), 1.88-1.91 (m, 6H), 2.71 (q, J = 12.4 Hz, 3H), 4.77 (d, J = 12.4 Hz, 2H), 7.99 (dd, J = 1.6 Hz, J = 8.0 Hz, 1H), 8.14 (t, J = 7.6 Hz, 1H), 8.24 (dd, J = 8.8 Hz, J = 14.0 Hz, 2H), 8.36-8.42 (m, 4H), 8.68 (d, J = 9.2 Hz, 1H) ppm. ¹³C NMR (DMSO-d₆, 100 MHz): δ = 25.3, 26.4 (d, J = 3.6 Hz), 26.5 (d, J = 11.9 Hz), 30.7, 31.1, 124.0, 124.1, 124.7 (d, J = 8.4 Hz), 124.8 (d, J = 2.1 Hz), 125.7 (d, J = 2.7 Hz), 126.1, 126.4, 127.2, 127.7, 128.4, 128.5, 129.0 (d, J = 3.1 Hz), 129.8 (d, J = 5.5 Hz), 130.6, 131.0 (d, J = 2.9 Hz), 131.3 ppm. ³¹P NMR (DMSO-d₆, 162 MHz): δ = 32.44 ppm. HRMS (ESI⁺): calcd for C₃₅H₄₄P [M⁺] 495.3175, found 495.3123. Elemental analysis calcd (%) for M+H₂O: C 70.82, H 7.81, found: C 71.02, H 7.67.

![Triocetyl(pyren-1-ylmethyl)phosphonium bromide (3·Br)](image)

Triocetyl(pyren-1-ylmethyl)phosphonium bromide (3·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol),
trioctylphosphine (1.34 mL, 3.0 mmol) and EtOAc (10.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20, v/v) afforded 3·Br as a white solid (1.2353 g, 93% yield). ¹H NMR (DMSO- d₆, 400 MHz): δ = 0.81 (t, J = 7.2 Hz, 9H), 1.06-1.29 (m, 36H), 2.24-2.31 (m, 6H), 4.66 (d, J = 16.0 Hz, 2H), 8.11-8.16 (m, 2H), 8.24 (dd, J = 9.2 Hz, J = 15.2 Hz, 2H), 8.35-8.40 (m, 4H), 8.65 (d, J = 9.2 Hz, 1H) ppm. ¹³C NMR (DMSO-d₆, 100 MHz): δ = 13.9, 17.8, 18.2, 20.5 (d, J = 4.6 Hz), 22.0, 28.1 (d, J = 14.3 Hz), 30.0 (d, J = 11.2 Hz), 31.1, 123.3, 123.5 (d, J = 9.3 Hz), 123.7, 124.4, 125.2, 125.5, 125.8, 126.6, 127.2, 127.9, 128.2, 128.8 (d, J =
4.1 Hz), 129.5 (d, \(J = 5.0\) Hz), 130.2, 130.7, 130.9 ppm. \(^{31}\)P NMR (DMSO-\(d_6\), 162 MHz): \(\delta = 34.01\) ppm. HRMS (ESI\(^+\)) : calcd for C\(_{41}\)H\(_{62}\)P [M]\(^+\) 585.4584, found 585.4575. Elemental analysis calcd (%) for M+H\(_2\)O: C 72.01, H 9.43, found: C 72.02, H 8.67.

Butyl-di-(1-adamantyl)-(pyren-1-ylmethyl)phosphonium bromide (4·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol), cyclohexyldiphenylphosphine (1.0756 g, 3.0 mmol) and EtOAc (20.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH\(_2\)Cl\(_2\) = 1/20, v/v) afforded 4·Br as a white solid (1.0854 g, 85% yield). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta = 0.79\) (t, \(J = 7.2\) Hz, 3H), 1.32-1.41 (m, 2H), 1.51-1.52 (m, 2H), 1.60-1.68 (m, 12H), 2.00-2.07 (m, 12H), 2.26-2.39 (m, 8H), 4.66 (d, \(J = 13.2\) Hz, 2H), 7.71 (dd, \(J = 2.0\) Hz, \(J = 8.0\) Hz, 1H), 7.86 (d, \(J = 8.0\) Hz, 1H), 7.92 (d, \(J = 8.8\) Hz, 1H), 8.00-8.06 (m, 2H), 8.15-8.20 (m, 3H), 8.68 (d, \(J = 9.6\) Hz, 1H) ppm. \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta = 13.5, 14.3, 16.3, 16.6, 19.3, 19.7, 25.0\) (d, \(J = 13.1\) Hz), 26.4 (d, \(J = 6.0\) Hz), 27.9 (d, \(J = 8.7\) Hz), 35.7, 37.4 (d, \(J = 3.0\) Hz), 41.5, 41.8, 123.4 (d, \(J = 9.0\) Hz), 124.2, 124.4, 124.8 (d, \(J = 2.8\) Hz), 125.2 (d, \(J = 2.1\) Hz), 125.7, 126.0, 126.5, 127.3, 128.2, 128.4, 128.8 (d, \(J = 3.8\) Hz), 129.6 (d, \(J = 5.4\) Hz), 130.5, 131.0 (d, \(J = 2.7\) Hz), 131.3 ppm. \(^{31}\)P NMR (CDCl\(_3\), 162 MHz): \(\delta = 28.86\) ppm. HRMS (ESI\(^+\)) : calcd for C\(_{40}\)H\(_{48}\)P [M]\(^+\) 573.3645, found 573.3643. Elemental analysis calcd (%) for M+H\(_2\)O: C 73.31, H 7.80, found: C 72.70, H 7.99.
Triphenyl(pyren-1-ylmethyl)phosphonium bromide (5·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol), triphenylphosphine (786.9 mg, 3.0 mmol) and EtOAc (10.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/15, v/v) afforded 5·Br as a white solid (1.0350 g, 93% yield). ¹H NMR (DMSO-d₆, 400 MHz): δ = 5.95 (d, J = 15.6, 2H), 7.58-7.69 (m, 12H), 7.79-7.84 (m, 5H), 7.94 (d, J = 9.2Hz, 1H), 8.06 (t, J = 7.6 Hz, 1H), 8.11-8.15 (m, 2H), 8.20-8.25 (m, 2H), 8.31 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (DMSO-d₆, 100 MHz): δ = 26.6 (d, J = 45.9 Hz), 117.6, 118.4, 121.7 (d, J = 9.3 Hz), 123.4, 123.8, 124.4 (d, J = 2.8 Hz), 125.1 (d, J = 3.7 Hz), 125.9, 126.2, 127.0, 127.6, 128.5, 129.8 (d, J = 5.2 Hz), 130.2 (d, J = 1.0 Hz), 130.4 (d, J = 12.3 Hz), 130.7 (d, J = 5.8 Hz), 131.1 (d, J = 1.1 Hz), 131.2 (d, J = 3.8 Hz), 134.6 (d, J = 9.8 Hz), 135.4 (d, J = 2.7 Hz) ppm. ³¹P NMR (DMSO-d₆, 162 MHz): δ = 22.55 ppm. HRMS (ESI⁺): calcd for C₃₅H₂₆P [M]+ 477.1767, found 477.1764. Elemental analysis calcd (%) for M+H₂O: C 73.05, H 4.90, found: C 73.59, H 4.76.

III. Physical and photophysical properties of phosphonium salts
Figure S1. Fluorescence emission spectra of phosphonium salts in different states in solid state (excited at the corresponding maximum excitation wavelength).

IV. X-Ray structure determination

Colorless block crystals of tributyl(pyren-1-ylmethyl)phosphonium hexafluorophosphate \(1\cdot\text{PF}_6\) were obtained by slow evaporation of an ethyl acetate solution and light yellow block crystals tributyl(pyren-1-ylmethyl)phosphonium bis((trifluoromethyl)sulfonyl)amide \(1\cdot\text{NTf}_2\) were obtained by slow diffusion of Et\(_2\)O to the MeOH solution in refrigerator. X-Ray single-crystal diffraction data were collected on a Oxford Xcalibur E CCD area-detector diffractometer with graphite monochromated Mo Ka radiation (\(\lambda = 0.71073 \ \text{Å}\)) with \(\omega\) scan mode. The crystal parameters, data collection and refinement results for the compound are summarized in Table S1.
Table S1. Crystallographic Data for tributyl(pyren-1-ylmethyl)phosphonium hexafluorophosphate (1·PF₆) and tributyl(pyren-1-ylmethyl)phosphonium bis((trifluoromethyl)sulfonyl)amide (1·NTf₂).

<table>
<thead>
<tr>
<th></th>
<th>1·PF₆</th>
<th>1·NTf₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C₃₉H₃₈F₆P₂</td>
<td>C₃₁H₃₈F₆NO₄PS₂</td>
</tr>
<tr>
<td>formula weight (M)</td>
<td>562.53</td>
<td>697.71</td>
</tr>
<tr>
<td>temperature (K)</td>
<td>293(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>crystal system</td>
<td>triclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P-1</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.7112(6)</td>
<td>10.7725(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>11.0294(6)</td>
<td>16.6577(5)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>13.6960(5)</td>
<td>18.3152(7)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>107.945(4)</td>
<td>98.142(3)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>96.334(4)</td>
<td>94.137(3)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>107.336(5)</td>
<td>92.423(2)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1432.53(12)</td>
<td>3240.38(19)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D_cal (g cm⁻³)</td>
<td>1.304</td>
<td>1.432</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.207</td>
<td>2.593</td>
</tr>
<tr>
<td>F(000)</td>
<td>592</td>
<td>1460</td>
</tr>
<tr>
<td>crystal size (mm)</td>
<td>0.30×0.20×0.20</td>
<td>0.80×0.80×0.50</td>
</tr>
<tr>
<td>reflns collected</td>
<td>11380</td>
<td>27178</td>
</tr>
<tr>
<td>unique reflns</td>
<td>5842</td>
<td>12306</td>
</tr>
<tr>
<td>R_int</td>
<td>0.0205</td>
<td>0.0550</td>
</tr>
<tr>
<td>goodness-of-fit on F²</td>
<td>1.068</td>
<td>1.047</td>
</tr>
<tr>
<td>R₁, wR₂ [I >2σ(I)]</td>
<td>0.0634, 0.1793</td>
<td>0.0715, 0.1911</td>
</tr>
</tbody>
</table>

Figure S2. ORTEP drawing of the single crystal of 1·PF₆ (left) and 1·NTf₂ (right) with 50% probability thermal ellipsoids.
Figure S3. Molecular stacking of the single crystals of $1\cdot \text{PF}_6$: side view (left) and front view (right).

Figure S4. Molecular stacking of the single crystals of $1\cdot \text{NTf}_2$: side view (left) and front view (right).
V. Fluorescence decay profiles of 1·PF₆ in different states

![Fluorescence decay profiles of 1·PF₆](image)

Figure S5. Fluorescence decay profiles of the pristine powder (left) and ground sample (right) of 1·PF₆.

V. Excitation of 1·PF₆ in different states

![Excitation spectra of 1·PF₆](image)

Figure S6. Excitation of the pristine powder and ground sample of 1·PF₆ monitored in different emission wavelength.

After grinding, red-shifted excitation could be observed for the ground sample of 1·PF₆, which was in accordance with the enhanced π–π interactions of the adjacent pyrene planes in the amorphous phase emerged by grinding.
VII. References

VIII. Copies of 1H, 13C, 19F and 31P NMR spectra