Support Information for

Rate Acceleration for 4,4'-Dimethoxydiphenyl Nitroxide Mediated Polymerization of Methyl Methacrylate

Zhecheng Zhu, Guorong Shan*, Pengju Pan

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China

*Corresponding Author

Tel.: +86-571-87951334; e-mail: shangr@zju.edu.cn
Figure 1. Evolution of $\ln[T]/[T]$ vs time for the DMDPN decay with CSA in tert-butylbenzene at 110 °C. $[\text{DMDPN}]_0=0.1$ mmol/L, $[\text{CSA}]_0=7.9$ mmol/L.

Figure 1: Sample of 1 mmol/L DMDPN in tert-butylbenzene with 7.9 mmol/L CSA (at the same concentration as Entry 4 used in the polymerization) were mixed and then placed in the ESR cavity maintained at 110°C. The concentration of DMDPN was determined from the ESR spectrum.
Figure 2. Growth of the ESR signal upon heating (T=110 °C) of the DMDPN with MN in tert-butylbenzene, before heating (solid line), 4h of heating (dashed line). [DMDPN]₀=0.1 mmol/L, [MN]₀= 35 mmol/L.

Figure 2: Sample of 0.1 mmol/L DMDPN in tert-butylbenzene with 35 mmol/L MN (at the same concentration as Entry 7 used in the polymerization) were mixed and then placed in the ESR cavity maintained at 110°C. The concentration of DMDPN was determined from the ESR spectrum.