Supporting information for

One-pot preparation of Bi/Bi$_2$WO$_6$/reduced graphene oxide as a plasmonic photocatalyst with improved activity under visible light†

Yan Zhou, Sushan Ren, Qimei Dong, Yingying Li, Hanming Ding*

School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

Synthesis of graphene oxide (GO)

Graphite oxide (GO) was synthesized via a modified Hummers’ method.$^{1-2}$ Briefly, 0.5 g previously oxidized graphite was reacted with a mixture of 2 g NaNO$_3$, 12 mL concentrated H$_2$SO$_4$ and 3 g KMnO$_4$, followed by addition of 40 mL H$_2$O and 10 mL H$_2$O$_2$ (30%). The product was filtered and washed with 5% HCl solution and deionized water to obtain a light yellow power, and dried at 60 °C for 12 h.

Synthesis of Bi/Bi$_2$WO$_6$

For the synthesis of Bi/Bi$_2$WO$_6$, 1g PVP (K-30) and 3.5mmol Bi(NO$_3$)$_3$•5H$_2$O were dissolved in 20 mL of ethylene glycol under stirring. And then 0.5 mL Na$_2$WO$_4$ solution (2 mol/L) was dumped into the mixture and stirred for 30 min obtain a homogeneous suspension. After that, the suspension was transferred into a Teflon-lined autoclave

† Electronic supplementary information (ESI) available.
with a capacity of 25 mL, and kept at 180 °C for 24 h. For the Bi/Bi$_2$WO$_6$ composites with a controllable composition, the mass fractions of Bi can be tuned by adjusting the molar ratio of Bi(NO$_3$)$_3$ to Na$_2$WO$_4$ in the reaction. The molar ratios of Bi(NO$_3$)$_3$ to Na$_2$WO$_4$ were controlled at 1:1, 2:1, 2.5:1, 3:1, 3.5:1 and 4:1, and the resulting samples were denoted as Bi/Bi$_2$WO$_6$-1, Bi/Bi$_2$WO$_6$-2, Bi/Bi$_2$WO$_6$-2.5, Bi/Bi$_2$WO$_6$-3, Bi/Bi$_2$WO$_6$-3.5 and Bi/Bi$_2$WO$_6$-4, respectively.

Synthesis of Bi$_2$WO$_6$ and Bi$_2$WO$_6$/rGO

For the synthesis of Bi$_2$WO$_6$, 1g PVP (K-30) and 3.5mmol Bi(NO$_3$)$_3$•5H$_2$O were dissolved in 20 mL of water under stirring. And then 0.5 mL Na$_2$WO$_4$ solution (2 mol/L) was dumped into the mixture and stirred for 30 min to obtain a homogeneous suspension. After that, the suspension was transferred into a Teflon-lined autoclave with a capacity of 25 mL, and kept at 180 °C for 24 h. Typically, rGO wrapped Bi$_2$WO$_6$ composite was obtained by the similar solvothermal method. As-prepared Bi$_2$WO$_6$, 1g PVP and 3mg GO were dispersed in 20 mL of ethylene glycol under stirring. Then the suspension was transferred into a Teflon-lined autoclave with a capacity of 25 mL, and kept at 180 °C for 24 h. After the autoclave was cooled naturally to room temperature, the product was separated, washed with absolute ethanol and distilled water for several cycles, and dried at 60 °C in vacuum.

As shown in Fig. S1, all of the diffraction peaks can be indexed to the orthorhombic phase of Bi$_2$WO$_6$ (marked with “•”) and the hexagonal phase of Bi.
(marked with “Δ”), respectively. Two sets of XRD peaks of Bi$_2$WO$_6$ and Bi can be clearly observed in Figure S1b-f. Meanwhile, the diffraction peak intensity ratio (I (Bi) /I(Bi$_2$WO$_6$)) between the two components increase gradually with increasing n(Bi(NO$_3$)$_3$) / n(Na$_2$WO$_4$) molar ratio, indicating that the content of Bi nanoparticles can be adjusted by changing the precursor molar ratios of n(Bi(NO$_3$)$_3$) : n(Na$_2$WO$_4$).

Fig. S1 Power X-ray diffraction patterns of (a) Bi/Bi$_2$WO$_6$-1, (b) Bi/Bi$_2$WO$_6$-2, (c) Bi/Bi$_2$WO$_6$-2.5, (d) Bi/Bi$_2$WO$_6$-3 (e) BB-3.5, and (f) Bi/Bi$_2$WO$_6$-4.

Fig. S2 shows the XRD patterns of the Bi/Bi$_2$WO$_6$/rGO nanocomposites prepared with different amounts of GO. The results indicating that the presence of rGO in the reaction mixture does not influence the structure of Bi and Bi$_2$WO$_6$. No diffractions peaks corresponding to either GO or rGO has been observed in the XRD patterns of the
resultant products, probably due to its low amount and relatively low diffraction intensity.⁴

![Graph showing X-ray diffraction patterns](image)

Fig. S2 Power X-ray diffraction patterns of (a) Bi/Bi₂WO₆/rGO-1, (b) Bi/Bi₂WO₆/rGO-2, (c) Bi/Bi₂WO₆/rGO-3, and (d) Bi/Bi₂WO₆/rGO-4.

The DRS of the as-prepared Bi/Bi₂WO₆ composites are shown in Fig. S3. The Bi/Bi₂WO₆ composites exhibit an enhanced absorption in the visible region than Bi₂WO₆. Furthermore, the absorbance of the Bi/Bi₂WO₆ composites increases especially in the visible region with increasing the molar ratio of Bi(NO₃)₃ to Na₂WO₄ in the precursor solutions, which is due to more Bi reduced in the Bi/Bi₂WO₆ composites.⁴ These results imply that the visible light response of the composites is improved by introducing Bi to the Bi₂WO₆ nanosheets, and the phase junction is
beneficial to the separation of the photogenerated charge carriers, which subsequently results in an enhanced photocatalytic activity.

Fig. S3 UV-vis diffuse reflectance adsorption spectra of (a) Bi/Bi$_2$WO$_6$-1, (b) Bi/Bi$_2$WO$_6$-2, (c) Bi/Bi$_2$WO$_6$-2.5, (d) Bi/Bi$_2$WO$_6$-3, (e) Bi/Bi$_2$WO$_6$-3.5, and (f) Bi/Bi$_2$WO$_6$-4.

Fig. S4 shows the photocatalytic properties of the as-prepared Bi/Bi$_2$WO$_6$ nanocomposites under visible light irradiation. The photocatalytic activity was enhanced when n(Bi(NO$_3$)$_3$) / n(Na$_2$WO$_4$) increased from 1 to 3.5 and decreased when the molar ratio was 4. The BB-1.4 composite has the highest photocatalytic activity.
Fig. S4 Photocatalytic degradation of RhB under visible light irradiation with different photocatalysts.
Fig. S5 The evolution of UV-Vis spectra for RhB and 4-CP aqueous solution in the presence of Bi/Bi₂WO₆/rGO-3 as a function of visible light irradiation time (20 min interval between t = 0 min and t = 120 min)
Fig. S6 TEM images of Bi/Bi$_2$WO$_6$/rGO-3 measured before (a) and after a photocatalytic reaction (b) under visible light irradiation.
Fig. S7 XPS of Bi/Bi$_2$WO$_6$/rGO-3 measured before and after a photocatalytic reaction under visible light irradiation.

Notes and references

