Electronic Supplementary Material

Turn on Fluorescence Detection of Ciprofloxacin in Tablet Based on Lanthanide Coordination Polymer Nanoparticles

Baoxia Liu, Yankai Huang, Qi Shen, Xu Zhu, Yuanqiang Hao, Peng Qu, and Maotian Xu

a Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

*Corresponding author; Tel/fax: +86 370 2586802; qupeng0212@163.com(Peng Qu), xumaotian@sqnc.edu.cn (Maotian Xu).
Figure S1

Figure S1 X-ray diffraction (XRD) spectra of Eu/GMP NPs (a) and Eu/GMP NPs in the presence of CIP (b).

Figure S2

Figure S2 Energy-dispersive X-ray (EDX) spectra of Eu/GMP NPs (a) and Eu/GMP NPs after the addition of CIP (b).
Figure S3

Figure S3 Excitation (left: a and c) and emission (right: b and d) spectra of Eu-CIP in water solutions (c, d) and in ethanol (a, b). (Inset is their fluorescences under a UV lamp).

Figure S4

Figure S4 Fluorescence of CIP under fluorescence mode (a) and time-resolve fluorescence mode with UV excitation (b).
Figure S5

Figure S5 FTIR spectra of GMP (a), Eu/GMP NPs (b), Eu/GMP-CIP NPs (c), and pure CIP (d). \(\nu \): stretching vibration; \(\delta \): scissoring vibration.

Figure S6

Figure S6 UV-vis spectra of Eu/GMP NPs (1:1, molar ratio), Eu/GMP NPs after the addition of CIP (1:1:6, molar ratio), Eu/CIP (1:1, molar ratio), CIP and GMP in HEPES (pH 7.4).
Figure S7

Figure S7. Fluorescence lifetimes of Eu/GMP NPs (a) and Eu/GMP NPs in the presence of CIP (b).

Figure S8

Figure S8. Effect of pH on fluorescence intensity of Eu/GMP NPs in the presence of CIP (20 μM).
Figure S9. Effect of reaction time on the fluorescence intensity of Eu/GMP NPs at 615 nm in the presence of CIP (20 µM)