Electronic Supplementary Information

Sharp Size-Selective Catalysis in Liquid Solution over Pd Nanoparticles Encapsulated in Hollow Silicalite-I Zeolite Crystals

Fangfang Wei, Jian Liu, Qiuyun Zhang, Yutao Zhang, Xing Zhang, Changyan Cao and Weiguo Song

School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, People's Republic of China. E-mail: weiff@iccas.ac.cn.

Beijing National Laboratory of Molecular Sciences, Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. E-mail: wsong@iccas.ac.cn.

Key Laboratory of Functional Materials and Chemistry for Performance and Resource of Guizhou Education Department, Anshun University, Anshun 561000, China.
E-mail: wsong@iccas.ac.cn

Experimental

Synthesis of HS-1 zeolite. Parent silicalite-1 zeolite was synthesized from the clear solution method with some modifications using a starting composition of 1 SiO$_2$:0.27 TPAOH:46 H$_2$O. 15 g tetrapropylammonium hydroxide (TPAOH) aqueous solution (25 wt%), 48 mL H$_2$O and 15.4 mL tetraethoxysilane (TEOS) was mixed and stirred at room temperature for 5 h to ensure complete TEOS hydrolysis to form a clear solution. The gel was then crystallized in a 100 mL Teflon-lined steel autoclave at 160 °C for 48 h. The product was recovered and calcined to remove the template in static air at 823 K for 6 h and denoted as S-1. The resulting solid was treated with 0.3 M TPAOH solution in an autoclave at 160 °C for 24 h to obtain a hollow core of the silicalite-1. The resulting solid was recovered and calcined to remove the template in static air at 823 K for 6 h and denoted as HS-1.

Synthesis of Pd@HS-1. 0.25 g hollow silicalite-1 were added a mixture of ethylene diamine (EDA) (0.78 g, 0.013 mol) and carbon tetrachloride (CTC) (1.73 g, 0.011 mol). The resultant mixture was stirred at 90 °C for 6 hours. Then, the obtained product was washed with deionized water and ethanol for 10 times at least until supernatant became colorless, and dried at ambient temperature, resulting in a brown powder (denoted as PEC@HS-1). Then 930 μL Na$_2$PdCl$_4$ aqueous solution (0.0564 M) was added and stirred 24 hours at RT. Excess Pd$^{2+}$ adsorbed at outside surface of the hollow zeolite particles was washed away to ensure exclusive loading of Pd nanoparticles inside the nanoreactor. Then 25 mL of 0.15 M sodium formate solution was added and the mixture was stirred for 5 h. Then the solid was recovered by centrifugation and washed with distilled water for five times. After drying at room temperature, Pd@hollow silicalite-1 composite was obtained and denoted as Pd@HS-1.

Synthesis of Pd/S-1. Pd/silicalite-1 with Pd metal clusters located on the external surface (denoted as Pd/S-1) was prepared for control experiments. 0.25 g silicalite-1 sample without calcination was added into 7.5 mL of dichloromethane, then the mixture was added with 0.25 mL 3-aminopropytrimethoxysilane (APTMS), and the slurry was stirred for 16 h at room temperature. The APTMS functionalized zeolite powder was then repeatedly washed with dichloromethane for 5 times and dried in a vacuum. The samples obtained were loaded with Pd cluster using conventional method.
Size-selective hydrogenation. The size-selective catalysis was carried out in a Teflon-lined stainless steel reactor. Typically, 20 mg catalysts with Pd loading of 3 wt %, 0.5 mmol 3-methyl-2-butenal or cinnamaldehyde or 3,3-diphenylacrylaldehyde, and 7.5 mL H₂O were loaded into the reactor (total volume: 25 ml). The reactor was sealed and purged with high-purity H₂ for three times under stirring to replace the air. Then the reactor was sealed and H₂ pressure was adjusted to 1 MPa. The autoclave was heated to 100 °C and lasted for certain time. After reaction, the reactor was quenched in cold water. The resulting hydrogenation products were extracted with 5-ml ethyl acetate and analyzed by GC-2010 Plus.

Characterization. Scanning electron microscopy (SEM) images were obtained on a JEOL-6701F scanning electron microscope at 10.0 kV. Transmission electron microscopy (TEM) was carried out on a JEOL 2100F electron microscope operated at 200 kV. The XRD measurements were carried out in Shimadzu XRD-7000 diffractometer equipped with CuKα radiation (wavelengths λ = 0.154 nm). The hydrogenation products were measured using Shimadzu GC-2010 Plus. Nitrogen adsorption-desorption isotherms was obtained on Quantachrome Autosorb AS-1. Elemental analysis was obtained on Flash EA 1112. Thermogravimetric analysis (TGA) was performed on NETZSCH/STA 409 PC Luxx simultaneous thermal analyzer with a heating rate of 5 °C/min under an air flow rate of 20 mL/min. Leaching of Pd was characterized by ICPE (Shimadzu ICPE-9000). X-ray photoelectron spectroscopy was obtained on VG ESCA Lab 220i-XL equipped with Mg/Al ultra-high vacuum X-ray binode-system. The FTIR spectrum of the interior polymer dots was recorded on a Nicolet iN10-iZ10 infrared spectrophotometer in 4000-400 cm⁻¹ after HF etching.
Fig. S1 SEM image of (a) S-1, (b) HS-1, and (c) TEM image of HS-1

Fig. S2 TEM images of Pd/S-1 in low (a, b) and high (c) magnification

Fig. S3 EDX spectrum of Pd@HS-1
Table S1 Elemental analysis of Pd@HS-1

<table>
<thead>
<tr>
<th>Element</th>
<th>Composition (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.16</td>
</tr>
<tr>
<td>H</td>
<td>0.90</td>
</tr>
<tr>
<td>N</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Fig. S4 FTIR spectrum of interior polymers

Fig. S5 TGA curve of Pd@HS-1
Fig. S6 XRD patterns of S-1, HS-1, Pd@HS-1 and Pd/S-1

Fig. S7 Curves of conversion vs time of hydrogenation of olefin aldehydes over (a) Pd@HS-1 and (b) Pd/S-1.

Scheme S1 Hydrogenation reactions of (a) 3-methyl-2-butenal, (b) cinnamaldehyde and (c) 3, 3-diphenylacrylaldehyde