Supporting Information

Electrochemical performances of highly amorphous GeO$_x$ powders synthesized in different alcohols for use in Na- and Li-ion batteries

Tetsuya Kajita* and Takashi Itoh.

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai-shi Miyagi-ken, 980-8579, Japan

*Corresponding author
E-mail: kajita@fris.tohoku.ac.jp

Contents of supporting information

Figure S1 Schematic of expected process of forming GeO$_x$ powders.

Figure S2 XRD patterns of the amorphous GeO$_x$ powders synthesized by oxidation using different alcohols.

Figure S3. The second charge/discharge curves of the amorphous GeO$_x$ electrodes. (a) 2$^{\text{nd}}$ cycle in Li-ion cells and (b) 2$^{\text{nd}}$ cycle in Na-ion cells.

Table S1 Contribution ratio of Ge states in amorphous GeO$_x$ electrode from deconvolution of Ge 3d spectra.
Figure S1 Schematic of expected process of forming GeOx powders.
XRD patterns of the amorphous GeO\textsubscript{x} powders synthesized by oxidation using different alcohols.

The broad peaks at approximately 25° and 50° are assignable to amorphous GeO. In the case of the electrode of the powder synthesized using methanol, the sharp peaks at 2θ of 26° is assignable to GeO\textsubscript{2}.

Figure S2 XRD patterns of the amorphous GeO\textsubscript{x} powders synthesized by oxidation using different alcohols.
The second charge/discharge curves of the amorphous GeO\textsubscript{x} electrodes

The second charge/discharge curves of the amorphous GeO\textsubscript{x} electrodes are shown in Figure s1. During the 2nd cycle of the Li-ion cell, the electrodes exhibited reversible capacities of 1239–1213 mAh g-1 and an efficiency of 90 %. On the other hand, the electrodes used in the Na-ion cell exhibited reversible capacities of 310–319 mAh g-1 and an efficiency of 93 %.

Figure S3 The second charge/discharge curves of the amorphous GeO\textsubscript{x} electrodes. (a) 2nd cycle in Li-ion cells and (b) 2nd cycle in Na-ion cells.
Table S1 Contribution ratio of Ge states in amorphous GeO$_{x}$ electrode from deconvolution of Ge 3d spectra.

<table>
<thead>
<tr>
<th></th>
<th>Ge (%)</th>
<th>Ge+2 (%)</th>
<th>Ge+4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-propanol</td>
<td>35</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>1-propanol</td>
<td>43</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>Ethanol</td>
<td>35</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Methanol</td>
<td>50</td>
<td>15</td>
<td>40</td>
</tr>
</tbody>
</table>