Highly Stable Electrical Manipulation of Reflective Colors in Colloidal Crystals of Sulfate Iron Oxide Particles in Organic Media

Hye-Young Lee a,b, Seung-Hyun Kimb, Hae-Nyung Lee,a,b Keum Hwan Park,a Young-Seok Kima,*, Gi-Ra Yib,*

aKorea Electronics Technology Institute, Seongnam, Gyeonggi 13509, Republic of Korea

bSchool of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea

*vis4freedom@keti.re.kr, yigira@skku.edu

Figure S1. X-ray diffraction pattern of carbon-coated iron oxide (Fe\textsubscript{3}O\textsubscript{4}) nanoparticles.
Figure S2. Highly concentrated suspension of sulfate iron oxide nanoparticles in propylene carbonate (18, 19 wt%) show reflective colors with shorter wavelengths under same external electric field.

Figure S3. The photographic images of reflected color of colloidal crystals of (a) carbon-coated iron oxide nanoparticles and (b) sulfate carbon-coated iron oxide nanoparticles under electric field ranging from 0 to 4V.