Electronic Supplementary Information

Covalent modification of reduced graphene oxide by chiral side-chain liquid crystalline oligomer via Diels-Alder reaction

Xiaodong Zhang, Yuehua Cong and Baoyan Zhang*

Centre for Molecular Science and Engineering, Northeastern University, Shenyang, 110819, China

Synthesis of CSLCO

The liquid crystalline monomer cholesteryl 4-(allyloxy)benzoate (M₁) was prepared according to previously reported synthetic method.¹ It showed the following phase transition: Crystalline (112 °C), chiral nematic (240 °C), and isotropic fluid, the detailed chemical parameters of M₁ were as follows, IR (KBr, cm⁻¹): 3057(=CH), 2971-2860(-CH₃, -CH₂-), 1703(C=O), 1645 (C=C), 1604, 1493(Ar-), 1271, 1173 (C-O-C).¹H NMR (600 MHz, CDCl₃, δ): 7.99-7.98 (d, 2H, Ar-H), 6.92 (d, 2H, Ar-H), 6.05 (m, 1H, CH₂=CH-), 5.44-5.41 (t, 2H, CH₂=CH-), 5.32-5.31 (m, 1H, =CH-H in cholesteryl), 4.59-4.58 (d, 2H, -OC₂H₅-), 2.03-0.67 (m, 44H, cholesteryl-H). 4-(10-undecen-1-yloxy) benzoic acid (M₂) was synthesized according to reference,² the detailed chemical parameters of M₂ were as follows, (mp=128 °C). IR (KBr, cm⁻¹): 3080(=CH); 2930, 2852(-CH₂-); 2678, 2557(COOH); 1754, 1695 (C=O), 1642 (C=C), 1602, 1508 (Ar-). 1H NMR (600 MHz, CDCl₃, δ): 1.29-1.36 (10H, m, CH₂=CHCH₂(C₆H₅)-); 1.73-1.78 (2H, m, -CH₂CH₂COO-); 2.02-2.06 (2H, m,CH₂=CHCH₂-); 2.37-2.60 (2H, m, -CH₂CH₂COO-); 4.85-5.02 (2H, m, CH₂=CH-); 5.13 (s, 1H, -OH); 5.77-5.86 (1H, m, CH₂=CH-); 6.84-8.26 (12H, m, Ar-H). CSLCO was synthesized according to reference.³ M₁, M₂ and M₃ were added to polymethylhydrogensilxoane (PMHS, Aldrich). After the addition of platinum
catalyst, the polymerization was carried out at 80 °C under nitrogen protection with magnetic stirring until the infrared spectra showed no Si-H absorption peak at 2166 cm$^{-1}$. The polymer solution was dried over anhydrous magnesium sulfate and filtered, then, furoyl chloride was dissolved in tetrahydrofuran (THF) and added dropwise to the solution of polymers at 25 °C. The mixture was stirred at room temperature under dry air for 3 h, then heated to 65 °C and kept for 10 h in an oil bath to ensure that the reaction finished. The solution was poured into a beaker filled with 100 mL of methanol, the crude product was obtained by filtration and recrystallized from ethanol. The chiral side-chain liquid crystalline oligomer (CSLCO) was obtained.

Diels-Alder Reaction

The forward reaction leads to the formation of a six-membered ring via simultaneous creation of two new σ-bonds and one new π-bond and the loss of three π-bonds; alternatively, the process may be viewed as a change in hybridization in which four sp2 carbon atoms become sp3 hybridized.

![Diagram of Diels-Alder reaction]

SCHEME 1. Schematic representation of the Diels-Alder reaction between a Diene (1,3-Butadiene) and Dienophile (Ethylene), illustrating the Diels-Alder cycloaddition and cycloreversion reactions in their simplest form

Canonical Resonance Structures of Graphene

In contrast to fullerene and carbon nanotubes, which always act as the dienophile in [4 + 2] cycloaddition due to their curvatures, 2-dimensional graphene and its derivatives are able to behave as both diene and dienophile.
The reasons for the necessary of M_1 and M_2

The reasons for using M_1 are that M_1 has wide liquid crystalline range (from 112 °C to 240 °C) and the chemical structure possesses high stability for lack of reactive functional groups. The extra spacer in M_1 is used to broaden the liquid crystalline range of M_1. The reasons for using M_2 are as following, There is long hydrocarbon chain in the molecular structure of M_2 compared with M_1, the main purpose of using M_2 is to bring some flexibility to CSLCO. Meanwhile, M_2 has carboxyl group, which makes R_2 have good compatibility. Based on the above analysis, both M_1 and M_2 are necessary in this study.

REFERENCES
