Supplementary Information for

Synthesis of pyrazole derivatives in the presence of dioxomolybdenum complex supported on silica-coated magnetite nanoparticles as an efficient and easily recyclable catalyst

Jamshid Rakhtshah, Sadegh Salehzadeh*, Ehsan Gowdini, Farahnaz Maleki, Saeed Baghery and Mohammad Ali Zolfigol

Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
Fig S1. The IR of 5-amino-3-(perfluorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (Table 3, entry 5)
Fig S2. The 1H NMR of 5-amino-3-(perfluorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (Table 3, entry 5)
Fig S3. The expanded 1H NMR of 5-amino-3-(perfluorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (Table 3, entry 5)
Fig S4. The 13C NMR of 5-amino-3-(perfluorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (Table 3, entry 5)
Fig S5. The expanded 13C NMR of 5-amino-3-(perfluorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (Table 3, entry 5)
Fig S6. The Mass spectrea of 5-amino-3-(perfluorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (Table 3, entry 5)
Fig S7. The IR of 5-amino-1-phenyl-3-(ferrocene-yl)-1H-pyrazole-4-carbonitrile (Table 3, entry 6)
Fig S8. The Mass spectra of 5-amino-1-phenyl-3-(ferrocene-yl)-1H-pyrazole-4-carbonitrile (Table 3, entry 6)
Fig S9. The IR of 5-amino-3-(5-fluoro-2-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 7)
Fig S10. The 1H NMR of 5-amino-3-(5-fluoro-2-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 7)
Fig S11. The expand 1H NMR of 5-amino-3-(5-fluoro-2-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 7)
Fig S12. The 13C NMR of 5-amino-3-(5-fluoro-2-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 7)
Fig S13. The expanded 13C NMR of 5-amino-3-(5-fluoro-2-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 7)
Fig S14. The Mass spectra of 5-amino-3-(5-fluoro-2-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 7)
Fig S15. The IR of 5-amino-1-phenyl-3-(1H-pyrrol-2-yl)-1H-pyrazole-4-carbonitrile: (Table 3, entry 8)
Fig S16. The 1H NMR of 5-amino-1-phenyl-3-(1H-pyrrol-2-yl)-1H-pyrazole-4-carbonitrile: (Table 3, entry 8)
Fig S17. The expanded 1H NMR of 5-amino-1-phenyl-3-(1H-pyrrol-2-yl)-1H-pyrazole-4-carbonitrile: (Table 3, entry 8)
Fig S18. The 13C NMR of 5-amino-1-phenyl-3-(1H-pyrrol-2-yl)-1H-pyrazole-4-carbonitrile: (Table 3, entry 8)
Fig S19. The expanded 13C NMR of 5-amino-1-phenyl-3-(1H-pyrrol-2-yl)-1H-pyrazole-4-carbonitrile: (Table 3, entry 8)
Fig S20. The Mass spectrema of 5-amino-1-phenyl-3-(1H-pyrrol-2-yl)-1H-pyrazole-4-carbonitrile: (Table 3, entry 8)
Fig S21. The IR of 5-amino-3-(furan-2-yl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 12)
Fig S22. The 1H NMR of 5-amino-3-(furan-2-yl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 12)
Fig S23. The expanded 1H NMR of 5-amino-3-(furan-2-yl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 12)
Fig S24. The 13C NMR of 5-amino-3-(furan-2-yl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 12)
Fig S25. The expanded 13C NMR of 5-amino-3-(furan-2-yl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 12)
Fig S26. The Mass spectrea of 5-amino-3-(furan-2-yl)-1-phenyl-1H-pyrazole-4-carbonitrile: (Table 3, entry 12)
Fig S27. The IR of 5-amino-1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbonitrile: (Table 3, entry 13)
Fig S28. The 1H NMR of 5-amino-1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbonitrile (Table 3, entry 13)
Fig S29. The expanded 1H NMR of 5-amino-1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbonitrile : (Table 3, entry 13)
Fig S30. The 13C NMR of 5-amino-1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbonitrile : (Table 3, entry 13)
Fig S31. The expanded 13C NMR of 5-amino-1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbonitrile: (Table 3, entry 13)
Fig S32. The Mass spectrea of 5-amino-1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbonitrile : (Table 3, entry 13)
Table 3. The three-component synthesis of 5-amino-pyrazole-4-carbonitrile derivatives in the presence of 0.02 g of nano catalyst.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>Time (min)</th>
<th>Yieldb (%)</th>
<th>M.p [\textdegree]C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
<td>95</td>
<td>175-177 (Yellow)30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15</td>
<td>93</td>
<td>221-223 (White)30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>15</td>
<td>92</td>
<td>163-165 (Yellow)30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>25</td>
<td>88</td>
<td>235-237 (Orange)30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
<td>94</td>
<td>158-160 (Orange)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>25</td>
<td>88</td>
<td>>300 (Violet)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>20</td>
<td>90</td>
<td>161-163 (Brown)</td>
<td></td>
</tr>
</tbody>
</table>
17

18

25 85 210-212 (Orange)45

25 88 158-160 (Brown)44
Fig S33. Reusability of Fe$_3$O$_4$@Si@MoO$_2$ as a heterogeneous catalyst in 20 minutes.