Electronic Supplementary Information

Regenerable copper mesh based oil/water separator with switchable underwater oleophobicity

Yi Chen,ab Xinda Li,a Mary Glasper,ac Li, Liu,a Hyun-Joong Chung*a, John A Nychka*a

aDepartment of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, T6G2V4 Canada

bScion, Private Bag 3020, Rotorua, 3046, New Zealand

cDepartment of Human Ecology, University of Alberta, Edmonton, Alberta, T6G2N1 Canada

Corresponding Author Email: chung3@ualberta.ca; jnychka@ualberta.ca

![UV-Visible absorption spectrum](image)

Fig S1. UV-Visible absorption spectrum of dyed kerosene, reference water and collected water after separation.

UV-visible absorption spectra were recorded by a UV-vis spectrophotometer (Perkin-Elmer NIR-UV, USA), to determine if there was oil left in the water after “water-removing” and “oil-removing” mode separation. Oil (Kerosene) was dyed with Oil Red O (1 wt\%, Sigma-Aldrich) with typical absorption peak at around 518 nm. UV-Visible absorption spectra of water after
Separation was compared with dyed oil (Fig. S1). There was no discernible dye absorption peak observed of the water separated using both “water-removing” and “oil-removing” mode, which suggests that the separated water contains no oil. 1-3

Reference