Electronic Supplementary Information:

Mn$_{0.5}$Co$_{2.5}$O$_4$ Nanofibers Sandwiched in Graphene Sheets for Efficient Supercapacitor Electrode Materials

Jinzuan Wang,a Jun Yang,*b Tao Huangb and Wenyan Yin*$_{ac}$

aSchool of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

bSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

cInnovative Institute of Electromagnetic Information and Electric Integration, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China.

* yangj723@sjtu.edu.cn; wyyin@sjtu.edu.cn; wyyin@zju.edu.cn
Fig. S1 Thermogravimetric analysis (TGA) curves of the MnCo@rGO precursor under air flow with a temperature ramp of 5 °C min⁻¹.

Table S1 Quantitative analysis of Co, Mn, O and C contents by ICP-AES, XPS and EA.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Co wt%</th>
<th>Mn wt%</th>
<th>O wt%</th>
<th>C wt%</th>
<th>Co/Mn ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP-AES</td>
<td>31.3</td>
<td>5.8</td>
<td></td>
<td></td>
<td>5.03</td>
</tr>
<tr>
<td>XPS</td>
<td>28.8</td>
<td>5.3</td>
<td>21.6</td>
<td>44.3</td>
<td>5.06</td>
</tr>
<tr>
<td>EA</td>
<td></td>
<td></td>
<td>20.1</td>
<td>43.5</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S2 (a) Full XPS spectra of the Mn\textsubscript{0.5}Co\textsubscript{2.5}O\textsubscript{4}@G composite. (b) High-resolution Mn 2p XPS spectra of Mn\textsubscript{0.5}Co\textsubscript{2.5}O\textsubscript{4}@G. (c) High-resolution Co 2p XPS spectra of Mn\textsubscript{0.5}Co\textsubscript{2.5}O\textsubscript{4}@G. (Note for (b) and (c): the black line is the original signal, and the red curve is the result of the curve fit. Olive and magenta peaks correspond to 2p\textsubscript{1/2} and 2p\textsubscript{3/2} species, respectively, and blue peak corresponds to the associated satellite species, after de-convolution.) (d) High-resolution O 1s XPS spectra of Mn\textsubscript{0.5}Co\textsubscript{2.5}O\textsubscript{4}@G. (Note for (d): the black line is the original signal, and the red curve is the result of the curve fit. Magenta peaks correspond to M-O-M species, and blue peak corresponds to the associated satellite species, after de-convolution.) (e) High-
resolution C 1s XPS spectra of GO. (Note for (e): the black line is the original signal, and the red curve is the result of the curve fit. Dark yellow and magenta peaks correspond to C-OX and C-C/C=C species, respectively, and blue peak corresponds to the associated satellite species, after de-convolution.) (f) High-resolution C 1s XPS spectra of Mn_{0.5}Co_{2.5}O_{4}@G. (Note for (f): the black line is the original signal, and the red curve is the result of the curve fit. Olive and magenta peaks correspond to C=O and C-C/C=C species, respectively, and blue peak corresponds to the associated satellite species, after de-convolution.)

![Graphs](image)

Fig. S3 Electrochemical characterization of the MnCo_{2}O_{4} for supercapacitors. (a) Galvanostatic discharge curves at various current densities ranging from 5 to 40 A g^{-1}. (b) Specific capacitances derived from the discharging curves. (c) Cycling performance at the constant current density of 10 A g^{-1}.
Fig. S4 SEM image of the Mn$_{0.5}$Co$_{2.5}$O$_4$@G composite after 5000 charge/discharge cycles.

Fig. S5 (a) Nyquist plots of the Mn$_{0.5}$Co$_{2.5}$O$_4$@G electrode after 1st, 1000th and 5000th cycle. The insets show the corresponding equivalent circuit model used for fitting impedance spectra. R_s is the solution resistance, R_{ct} is charge-transfer resistance caused by the Faradaic reactions, C_{dl} is double-layer capacitance on the electrode surface, and Z_w is the Warburg resistance related to the ion diffusion/transport in the electrolyte to the electrode surface.
Fig. S6 (a) CV curves of the Mn\textsubscript{0.5}Co\textsubscript{2.5}O\textsubscript{4}@G//AC device measured at different scan potential windows in 6.0 M KOH aqueous solution at a scan rate of 10 mV s-1. (b) CV curves of the Mn\textsubscript{0.5}Co\textsubscript{2.5}O\textsubscript{4}@G//AC device with different Mn\textsubscript{0.5}Co\textsubscript{2.5}O\textsubscript{4}@G to AC weight ratios of 1:1.5, 1:2.5, and 1:3.5, respectively.

Electrochemical Characterization of the AC//AC and graphene//graphene symmetric supercapacitors

The AC//AC symmetric supercapacitor was fabricated with two AC-based electrodes with the same AC mass loading, and the graphene//graphene symmetric supercapacitor was fabricated with two graphene-based electrodes with the same graphene mass loading. A series of electrochemical tests including cyclic voltammetry (CV) and galvanostatic discharge measurement were performed with the CHI 760D electrochemical workstation in an aqueous KOH electrolyte (6.0 M) with a commercial coin cell (LIR 2032).
Fig. S7 CV curves of AC//AC (a) and graphene//graphene (d) symmetric supercapacitors at different scan rates. Galvanostatic discharge curves of AC//AC (b) and graphene//graphene (e) symmetric supercapacitors at different current densities. Specific capacitances of AC//AC (c) and graphene//graphene (f) symmetric supercapacitors at different current densities.