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Computational Methods Details

All the calculations are carried out based on first-principles DFT combined with nonequilibrium Green’s function 
(NEGF) implemented in Atomistix ToolKit (ATK) package.70-72 The Generalized Gradient Approximation of Perdew-
Burke-Ernzerhof (GGA-PBE) with a double-ζ polarized basis set is adopted to solve Kohn-Sham equations and to 
expand electronic density. The density mesh cut off is set to be 150 Rydberg. The Grimme vdW correction (DFT-D2)73 
is also employed to describe long-range vdW interactions.74 In order to take into account the vdW interactions, an 
additional term (EvdW) is added to the DFT total energy (EDFT):
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The EvdW is calculated using an attractive semi-empirical pair potential (VPP):
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The VPP between two atoms, for example atoms 1 and 2, which are located at a distance r apart can be defined as:
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here C6 and R0 are the element-specific parameters and f(x) is a cut-off function which is defined as:
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Typically, d (damping parameter) is set to be 20. Besides vdW interactions, since our systems have two subsystems: 
the SiNR (A) and the gas molecule (B), so-called basis set superposition errors (BSSE) are expected due to the 
incompleteness of the Linear Combination of Atomic Orbitals (LCAO) basis set. In an isolated A system, only the basis 
orbitals in the A system are responsible to describe it. While, A and B are coupled, the basis orbitals in the system B 
will also be used to describe system A, resulting in a larger available basis set for system A. Consequently, there will be 
an artificial interaction which decreases the total energy. To eradicate BSSE, a counterpoise (cp) correction is added to 
the total energy:75
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here EDFT is the total energy of the system AB and Ecp is the counterpoise corrected energy which is: 
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where EAB’ (EA’B) is the energy of system A (B) using the AB basis orbitals, which is obtained by considering so-called 
ghost orbitals at the atomic positions in the system B (A). Ghost atoms have no charge and no mass; however, they 
have basis orbitals. EA (EB) is the total energy of an isolated system A (B) using the A (B) basis orbitals. Finally, the total 
energy of the system considering the long-range vdW interactions and artificial attractions between two subsystems 
is:
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To avoid the mirroring interactions, a vacuum space of 25 Å is considered in x and y directions in which the 
structures are not periodic. The electronic temperature is kept constant at 300 °K. All the structures are completely 
relaxed, prior to the calculations, up until the force and stress are less than 0.01 eV/Å and 0.005 eV/ Å3, respectively. 
1×1×21 k-points in the Brillouin zone are sampled for geometry optimization and 1×1×121 k-points for total energy, 
band structure, charge transfer, and electron transport calculations.

To investigate the charge transfer and transport properties, the gas sensing system is divided onto three regions: 
two electrode regions (left and right) and a scattering region (the central region), as illustrated in Fig. 1. To match the 
effective potential of central region with bulk electrodes, the perturbation of the scattering region should be screened 
out. To this end, a sufficient fraction of the electrode regions should be repeated in the scattering region. To calculate 
the non-equilibrium electron distribution in the central region, the NEGF method is employed. The charge density of 
the system based on the occupied eigenstates can be defined as
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here f(x)=1/(1+ex) is the Fermi function,  is the wave function, f is the Fermi energy, T is the electron temperature, 
and k is the Boltzmann constant. Conveniently, n(r) can be presented in term of density matrix (Dij)
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where Dij is defined by basis set expansion coefficients

* ( )f
ij i jD c c f

kT


 


 


The density matrix is divided into left and right contributions 
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where DL(R) is calculated using NEGF theory by 
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Where L(R() ,the spectral density matrix, is
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Here L(R) is the broadening function of the left (right) electrode which defined as
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where  L(R ,the left (right) electrode self-energy, is
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where gL(R) is the surface Green’s function for the semi-infinite electrodes and VL(R)/S = V†
S/(L/R) are the coupling matrix 

elements between electrodes and the scattering region. Furthermore, the key quantity to calculate is G, the retarded 
Green's function matrix, 
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where + is an infinitesimal positive number. S and H are the overlap and Hamiltonian matrices of the entire system, 
respectively. The Green's function is only required for the central region and can be calculated from the Hamiltonian 
of the central region by adding the electrode self-energies 
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The transmission amplitude tk, defines the fraction of a scattering state k propagating through a device. The 
transmission coefficient at energy  is obtained by summing up the transmission from all the states at this energy, 
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The transmission coefficient may also be obtained from the retarded Green's function using 
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At TR = TL = 0 (electron temperature) the conductance is determined by the transmission coefficient at the Fermi Level,
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where G0=2e2/h is the quantum conductance, in which e is the electron charge and h is Planck’s constant.


