**Electronic Supplementary Information**

*Preparation and application of surface activated Si-MCM-41 and SBA-16 as reusable supports for reduction of cyclic ketones with preferential stereoselectivity*

Haribandhu Chaudhuri, Subhajit Dash, and Ashis Sarkar*

Organic Materials Research Laboratory, Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand-826004, India.

*Corresponding author: Ashis Sarkar, E-mail: a_sarkar_99@yahoo.com, Tel. +91 9430335255, Fax: +91 326-2307772.

**Table of contents**

\(^1\)H NMR spectra of reduced ketones (Fig. S1-S30)........................................................................................................S2-S31

---

This journal is © The Royal Society of Chemistry 2016
Fig. S1: $^1$H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S2: $^1$H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S3: $^1$H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S4: $^1$H NMR spectrum of reduction product of 4-tert-butylocyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.
Fig. S5: $^1$H NMR spectrum of reduction product of 4-tert-butylecyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.
**Fig. S6:** $^1$H NMR spectrum of reduction product of 4-tert-butylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.
Fig. S7: $^1$H NMR spectrum of reduction product of 2-methylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.
**Fig. S8:** $^1$H NMR spectrum of reduction product of 2-methylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.
**Fig. S9:** $^1$H NMR spectrum of reduction product of 2-methylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S10: $^1$H NMR spectrum of reduction product of 2-methylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.
Fig. S11: $^1$H NMR spectrum of reduction product of 2-methylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.
**Fig. S12:** $^1$H NMR spectrum of reduction product of 2-methylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.
Fig. S13: $^1$H NMR spectrum of reduction product of 3-methylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S14: $^1$H NMR spectrum of reduction product of 3-methylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S15: $^1$H NMR spectrum of reduction product of 3-methylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S16: $^1$H NMR spectrum of reduction product of 3-methylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.
Fig. S17: $^1$H NMR spectrum of reduction product of 3-methylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.
Fig. S18: $^1$H NMR spectrum of reduction product of 3-methylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.
Fig. S19: $^1$H NMR spectrum of reduction product of 4-methylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S20: $^1$H NMR spectrum of reduction product of 4-methylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S21: $^1$H NMR spectrum of reduction product of 4-methylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S22: $^1$H NMR spectrum of reduction product of 4-methylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.
**Fig. S23**: $^1$H NMR spectrum of reduction product of 4-methylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.
Fig. S24: $^1$H NMR spectrum of reduction product of 4-methylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.
Fig. S25: $^1$H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (2 mmol) using acid treated calcined Si-MCM-41 as support.
**Fig. S26:** $^1$H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (5 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S27: $^1$H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (10 mmol) using acid treated calcined Si-MCM-41 as support.
Fig. S28: $^1$H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (2 mmol) using acid treated calcined SBA-16 as support.
Fig. S29: $^1$H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (5 mmol) using acid treated calcined SBA-16 as support.
Fig. S30: $^1$H NMR spectrum of reduction product of 3,3,5-trimethylcyclohexanone (10 mmol) using acid treated calcined SBA-16 as support.