Controlled synthesis of pure Au$_{25}$(2-Nap)$_{18}$ and Au$_{36}$(2-Nap)$_{24}$ nanoclusters from 2-(Diphenylphosphino)pyridine protected Au nanoclusters

Yifei Zhang,a,b Chao Liu,b Xiujuan Yang,b Ming Bao,a,* Jiahui Huang,a,* Wenjie Shenb

Experimental

Chemical

All the chemicals were used as received without further purification. Tetrachloroauric acid (HAuCl$_4$.4H$_2$O, 99%) was purchased from Acros (Belgium). 2-Naphthalenethiol (2-Nap, 99%), 2-(diphenylphosphino)pyridine (PPh$_2$Py, 98%) and triphenylphosphine (PPh$_3$, 98%) were purchased from Adamas (Switzerland). Sodium borohydride (NaBH$_4$, 99%, Sinopharm), dichloromethane (DCM, 99%), toluene (99%), methanol (99%), 1-hexane (99%) and ethanol (99%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (China). The structures of ligands were shown in Figure S4.

Preparation of phosphine protected Au nanoclusters as precursors

[Au(PPh$_2$Py)Cl] and [Au(PPh$_3$)Cl] complex were obtained at room temperature via reacting HAuCl$_4$ with PPh$_2$Py or PPh$_3$ in 20 mL acetone. The [Au(PPh$_2$Py)Cl] or [Au(PPh$_3$)Cl] was dissolved in acetone and stirred for 15 min in flask. And then, NaBH$_4$ dissolved in ethanol was added into the reaction solution and stirred for 1 day. After that, the product was washed with hexane four times. At last, the product was extracted with DCM twice, and used as the precursors for further etching treatment.

Synthesis of Au$_{25}$(2-Nap)$_{18}$ nanoclusters

Au$_{25}$(2-Nap)$_{18}$ nanoclusters were obtained by heating the Au nanoclusters precursors at high temperature with excess thiols. In details, Au nanoclusters precursors were dissolved in 2 mL DCM and 20 mL toluene. 2-naphthalenethiol (220 mg) was added to solution and vigorously stirred. The solution was heated at 80 °C for 1 day. When the reaction was finished, the solution was dried and washed with methanol four times. To obtain high-purity product, the crude product was extracted with DCM two times. The purified product was collected by evaporating DCM.

Synthesis of Au$_{36}$(2-Nap)$_{24}$ nanoclusters
The synthetic procedure of Au$_{36}$(2-Nap)$_{24}$ is similar to that of Au$_{25}$(2-Nap)$_{18}$. The Au nanoclusters precursors were dissolved in 2 mL DCM and 20 mL toluene. 200 mg 2-naphthalenethiol was added to reaction solution. The solution was heated at 50 °C and vigorously stirred. After 1 day, the black solution was formed and dried with vacuum rotary evaporator at 40 °C. The crude product was washed with methanol and extracted with DCM two times. Finally, the purified product was collected by evaporating DCM at vacuum condition.

Characterization

Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) was measured on (MALDI-TOF/TOF 5800) using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) as the matrix. 0.5 mg matrix and 0.1 mg Au nanoclusters were dissolved in DCM, respectively, and mixed together. UV-Vis spectra of Au nanoclusters were collected on a Cary 100. 0.2 mg of Au nanoclusters were dissolved in 2 mL DCM.
Figure S1 The time-dependent UV-Vis absorption spectra of PPh2Py protected Au nanoclusters during the etching process at 60 °C.
Figure S2 The MALDI-mass spectrometry of PPh$_3$ protected polydisperse Au nanoclusters.
Figure S3 The UV-Vis spectrum of PPh$_3$ protected polydispersed Au nanoclusters.
Figure S4 The structure of ligands, 2-(diphenyl-phosphino)pyridine, triphenylphosphine and 2-Naphthalenethiol, respectively.