Cu₂O hollow structures—microstructural evolution and photocatalytic property

Baoshun Wang¹, Weiwei Zhang⁰, Zhiyun Zhang⁰, Renying Li⁰, Yulong Wu⁰, Zhengguang Hu⁰, Xiaoling Wu⁰, Chungang Guo⁰, Guoan Cheng⁰, Ruiting Zheng*¹

¹Key Laboratory of Radiation Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
²School of Science, Minzu University of China, Beijing 10081, PR China

Fig. S1 Schematic diagram of the PEC device for photocurrent measurement.

1 *corresponding-author: rtzheng@bnu.edu.cn
Fig. S2 The corresponding solution PH value of different reaction time.

Fig. S2 shows the PH of the solution at different time. We have found that the PH value of the solution decrease gradually with the increase of reaction time.
Fig. S3 TEM images of Cu$_2$O sub-micron structures obtained at different concentrations of NaOH respectively, (a) 0.2 M, (b) 0.3M, (c) 0.5M, (d) 2.5M.

Fig. S3 shows the different structure of Cu$_2$O hollow spheres obtained at different NaOH concentrations. As shown in Fig. S3(a), (b), (c), (d), the NaOH concentration are 0.2 M, 0.3M, 0.5M, 2.5M, respectively, while the other reaction conditions unchanged (keep the reaction for 5 minutes). We found that with the increase of alkaline, Multi-Shelled Hollow Spheres Cu$_2$O (Fig. S3(a)) gradually changed into Multi-Shelled Porous Spheres Cu$_2$O (Fig. S3(c)), with the further increase of alkaline, Single-Shelled Hollow Spheres Cu$_2$O (Fig. S3(d)) were formed. At the same time, we can find that the shell thickness of the particles increases gradually with the increase of time. So we can confirm that the different structure of Cu$_2$O hollow nanoparticles can be adjusted by changing alkalinity of the solution.