SUPPLEMENTARY INFORMATION

A Microwave-Assisted Highly Practical Chemoselective Esterification and Amidation of Carboxylic Acids

Gunindra Pathak, Diparjun Das and Lalthazuala Rokhum*

*aDepartment of Chemistry, National Institute of Technology Silchar, Silchar-10, Assam, India

*Corresponding author. Tel.: +91 3842 242915; fax: +91 3842-224797; email address: lalthazualarokhum@gmail.com; rokhum@che.nits.ac.in (L. Rokhum)
Table of Contents

General Remarks .. S4

1H & 13C NMR spectra of Dodecy1benzoat ... S5

1H & 13C NMR spectra of Octyl 4-methoxybenzoate .. S6

1H & 13C NMR spectra of Dodecyl 4-methoxybenzoate ... S7

1H & 13C NMR spectra of Octadecyl 4-methylbenzoate ... S8

1H & 13C NMR spectra of Octyl 4-nitrobenzoate ... S9

1H & 13C NMR spectra of Dodecyl 3-nitrobenzoate ... S10

1H & 13C NMR spectra of Octadecyl 4-flurobenzoate ... S11

1H & 13C NMR spectra of Phenethyl 4-chlorobenzoate .. S12

1H & 13C NMR spectra of Phenethyl propionate .. S13

1H & 13C NMR spectra of Octyl 2-ethylhexanoate .. S14

1H-NMR spectra of Dodecyl 2-ethylhexanoate ... S15

1H & 13C NMR spectra of Sec-butyl-2-ethylhexanoate .. S16

1H & 13C NMR spectra of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl2-ethylhexanoate. S17

1H & 13C NMR spectra of Dodecyl-4-methylbenzoate .. S18

1H & 13C NMR spectra of Phenethyl 4-methylbenzoate .. S19

1H & 13C NMR spectra of Phenethyl 4-methylbenzoate .. S20

1H & 13C NMR spectra of Octyl 4-hydroxybenzoate .. S21

1H & 13C NMR spectra of 6-Hydroxyhexyl benzoate ... S22

1H & 13C NMR spectra of 6-Hydroxyhexyl 4-nitrobenzoate S23

1H & 13C NMR spectra of 6-Hydroxyhexyl propionate ... S24

1H & 13C NMR spectra of N-benzylbenzamide ... S25

1H & 13C NMR spectra of N-cyclohexylbenzamide .. S26

1H & 13C NMR spectra of N-phenylbenzamide ... S27

1H & 13C NMR spectra of N-Cyclohexyl-4-nitrobenzamide S28
General Remarks
IR spectra were recorded on a Perkin–Elmer Spectrum One FTIR spectrometer. 1H and 13C
NMR spectra were recorded on a Bruker (500 MHz, 400 MHz and 300 MHz) spectrometer
using TMS as internal reference. Chemical shifts for 1H NMR spectra are reported (in parts
per million) relative to internal tetramethylsilane (Me$_4$Si $\delta = 0.0$ ppm) with CDCl$_3$ as solvents.
13C NMR spectra were recorded at 125 MHz and 100 MHz. Chemical shifts for 13C NMR
spectra are reported (in parts per million) relative to internal tetramethylsilane (Me$_4$Si $\delta = 0.0$
ppm) with CDCl$_3$ as solvent. 1H NMR data are reported in the order of chemical shift,
multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, and m = multiplet),
number of protons, and coupling constant in hertz (Hz). Mass spectra were obtained from
Waters ZQ 4000 mass spectrometer by the ESI method, while the elemental analyses of the
complexes were performed on a Perkin–Elmer-2400 CHN/S analyzer. TLC plates were
visualized by exposing in iodine chamber, UV-lamp or spraying with KMnO$_4$ and heating.
Fig: 1H & 13C NMR of Dodecylbenzoate, 2
Fig: 1H & 13C NMR of Octyl 4-methoxybenzoate, 5
Fig: 1H & 13C NMR of Dodecyl 4-methoxybenzoate, 6
Fig: 1H & 13C NMR of Octadecyl 4-methylbenzoate, 7
Fig: 1H & 13C NMR of Octyl 4-nitrobenzoate, 8
Fig: 1H & 13C NMR of 4-Tolyl 4-nitrobenzoate, 9
Fig: 1H & 13C NMR of Dodecyl 3-nitrobenzoate, 10
Fig: 1H & 13C NMR of Phenethyl 4-flurobenzoate, 11

S11
Fig: 1H & 13C NMR of Octadecyl 4- fluorobenzoate, 12
Fig. 1H & 13C NMR of Phenethyl-4-chlorobenzoate 14
Fig: 1H & 13C NMR of Phenethylpropionate, 16
Fig: 1H \& 13C NMR of Octyl 2-ethylhexanoate, 17
Fig: 1H & 13C NMR of Dodecyl 2-ethylhexanoate, 18
Fig: 1H & 13C NMR of Sec-butyl-2-ethylhexanoate, 19
Fig: 1H & 13C NMR of (1R,2S,5R)-2-isopropyl-5-methylecyclohexyl 2-ethylhexanoate, 20
Fig: 1H & 13C NMR of Dodecyl 4-methylbenzoate, 21
Fig: 1H & 13C NMR of Phenethyl 4-methylbenzoate, 22
Fig: 1H & 13C NMR of Octyl 4-hydroxybenzoate, 26
Fig: 1H & 13C NMR of 6-Hydroxethylbenzoate, 36
Fig: 1H & 13C NMR of 6-Hydroxylhexyl 4-nitrobenzoate, 37
Fig: 1H & 13C NMR of 6-Hydroxyhexylpropionate, 38
Fig: 1H & 13C NMR of N-benzylbenzamide, 40
Fig: 1H & 13C NMR of N-cyclohexylbenzamide, 41
Fig: 1H & 13C NMR of N-cyclohexyl 4-nitrobenzamide, 46

S28