Supporting Information

Nickel stabilized by triazole-functionalized carbon nanotubes as a novel reusable and efficient heterogeneous nanocatalyst for the Suzuki–Miyaura coupling reaction

Abdol R. Hajipour¹,²*, Parisa Abolfathi ¹

¹Pharmaceutical Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156, IR Iran, E-mail

²Department of Neuroscience, University of Wisconsin, Medical School, 1300 University Avenue, Madison, 53706-1532, WI, USA

*Corresponding author: Tel.: + 98 313 391 3262; fax: + 98 313 391 2350; e-mail: haji@cc.iut.ac.ir.
Fig S1 TEM micrograph of the recovered catalyst

Fig S2 XRD pattern of the recovered catalyst
Fig S3 SEM photograph of the recovered catalyst
1H-NMR, FT-IR and boiling points of some biaryl derivatives

Data section

4-nitrobiphenyl

White solid, melting point: 88°C

\(^1\)H-NMR (400 MHz, CDCl\(_3\), ppm, TMS): \(\delta = 8.3\) (d, \(J= 8.7\)Hz, 2H), 7.7 (d, \(J= 8.7\) Hz, 2H), 7.65 (dd, \(J= 1.8, 5.4\)Hz, 2 H), 7.55-7.40 (m, 3H).

FT-IR (KBr, cm\(^{-1}\)): \(\nu = 3363, 3242, 1596, 1513, 1351, 853, 739, 711\).

4-Acetylaryl

White solid, melting point: 121°C

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm, TMS): \(\delta = 8\) (d, \(J= 8.4\) Hz, 2H), 7.66 (d, \(J= 8.4\) Hz, 2H), 7.59-7.61 (m, 2H), 7.37-7.46 (m, 3H), 2.61(s, 3H)

FT-IR (KBr, cm\(^{-1}\)): \(\nu = 2918, 1726, 1669, 1410, 1268, 1120, 768, 690, 591\)

4-Methoxybiphenyl

White solid, melting point 87 °C:

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm, TMS): \(\delta = 7.50-7.54\) (m, 4H), 7.39 (t, \(J= 12\) Hz, 2H), 7.28(t, 16, 1H), 00NMR (4 \(^1\)H 6.96 (d, \(J= 8.8\) 2H), 3.83(s, 3H)

IR (KBr, cm\(^{-1}\)): \(\nu = 3073, 2963, 2836, 1722, 1578, 1486, 1287, 1247, 1032, 819, 612, 507\)
2-Acetylbiphenyl

1H NMR (400 MHz, CDCl$_3$, ppm, TMS): $\delta = 8.11$(t, J= 1.6 Hz, J= 2Hz, 1H), 7.87(d, J=7.6 Hz, 1H), 7.73(d, J=8.4Hz, 1H), 7.55(d, J=6.8Hz, 2H), 7.48(t, J=8Hz, J=7.6Hz, 1H), 7.40(t, J=7.2Hz, J=7.6 Hz, 2H), 7.33(d, J=7.2, 1H)