Supplementary Information

Effects of NaCl Concentration on Wear-corrosion Behavior of SAF 2507 Super Duplex Stainless Steel

Gaofeng Hana, b, Pengfei Jianga, Jianzhang Wanga,*, Fengyuan Yana,*

a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China

* Corresponding author. Tel: +86 0931 4968078 (J. Wang), +86 0931 4968185 (F. Yan) E-mail addresses: wjzsci@163.com (J. Wang), fyyan@licp.cas.cn (F. Yan)
\[T = \frac{m_0 - m_1}{S \times \rho \times t} \]

[1]

\[C = \frac{K \times i_{\text{corr}} \times EW}{\rho} \]

[2]

Where \(T \) is mechanical wear rate, \(m_0 \) is initial mass of material, \(m_1 \) is the final mass of material, \(S \) is the area of corrosion, \(\rho \) is the density, \(t \) is the corrosive wear test duration, \(C \) is the electrochemical corrosion rate. \(K \) is a constant \(3.27 \times 10^{-3} \) in \(\text{mm} \cdot \text{g} / \mu \text{m} \cdot \text{cm} \cdot \text{yr} \), \(EW \) is the material equivalent weight, \(i_{\text{corr}} \) is the corrosion current density.

The interaction relationship between wear and corrosion is shown as follows:

\[T = W_0 + C_0 + S \]

[3]

\[S = \Delta C_w + \Delta W_c \]

[4]

\[W_c = W_0 + \Delta W_c \]

[5]

\[C_w = C_0 + \Delta C_w \]

[6]

Where \(T \) is the total mass loss rate of wear-corrosion, \(W_0 \) is the wear rate without corrosion, \(C_0 \) is the corrosion rate without wear, \(S \) is the sum of the interactions between corrosion and wear determined by Eq. 4, \(\Delta C_w \) is the change in corrosion rate due to wear, \(\Delta W_c \) is the change in wear rate due to corrosion (the units of all the parameters mentioned above are \(\text{mm} \cdot \text{y}^{-1} \)).

According to ASTM G119-09 [19], the dominating effects of the regimes can be
defined as follows:

\[\frac{\Delta C_w}{\Delta W_c} < 0 \] Antagonistic effects dominate (Corrosion inhibits wear) \[7\]

\[0 < \frac{\Delta C_w}{\Delta W_c} < 0.1 \] Synergistic effects dominate (Corrosion is affecting wear greatly) \[8\]

\[0.1 \leq \frac{\Delta C_w}{\Delta W_c} < 1 \] The “additive” and “synergistic” interactions are equal (Wear is affecting corrosion to an equal to corrosion is affecting wear) \[9\]

\[\frac{\Delta C_w}{\Delta W_c} \geq 1 \] Additive effects dominate (Wear is affecting corrosion greatly) \[10\]

Wear-corrosion synergism degree is depicted by three dimensionless factors. They are total synergism factor, corrosion augmentation factor and wear augmentation factor. They are all calculated as follows, respectively.

\[\frac{T}{T-S} \] \[11\]

\[\frac{C_0 + \Delta C_w}{C_0} \] \[12\]

\[\frac{W_0 + \Delta W_c}{W_0} \] \[13\]