Supporting Information

MOF-derived self-sacrificing route to hollow NiS$_2$/ZnS nanospheres for high performance supercapacitors

Guo-Chang Li,¹ Minmin Liu,² Meng-Ke Wu,¹ Peng-Fei Liu,¹ Ziwei Zhou,² Shuai-Ru Zhu,¹ Rui Liu,*² and Lei Han*¹,³

¹ State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
² Ministry of Education Key Laboratory of Advanced Civil Engineering Material, College of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai 201804, China
³ Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
Figure S1. FT-IR spectrum (a) and XRD pattern (b) of the Ni/Zn-BDC MOF spheres.

Figure S2. EDS pattern of the Ni/Zn-BDC MOF spheres.
Figure S3. XRD (a) and XPS (b-c) patterns of the NiS$_2$/ZnS hollow nanospheres
Figure S4. EDS pattern of the NiS\textsubscript{2}/ZnS hollow nanospheres.
Figure S5. N$_2$ adsorption-desorption isotherms and pore size distribution (inset) of the NiS$_2$/ZnS hollow nanospheres.
Figure S6. CV curves of AC electrode at different scan rates; (b) GCD curves of AC electrode at different current densities; (c) The corresponding specific capacitance calculated by the GCD curves; (d) CV curves of the ASC at different voltage windows at a scan rate of 30 mV s$^{-1}$.