Electronic Supplementary Material (ESI)

A Universal Surface Enhanced Raman Spectroscopy (SERS)-Active Graphene Cathode for Lithium-Air Battery

Kewei Liu†, Zitian Yu†, Xiaowen Zhu, Shuo Zhang, Feng Zou, and Yu Zhu*

Department of Polymer Science, the University of Akron, 170 University Circle, Akron, Ohio 44325-3909, United States

*Address correspondence to: Yu Zhu (yu.zhu@uakron.edu)

†These authors contributed equally to this work.
Fig. S1 a) Small pore size AAO membrane. b) Large pore size AAO membrane. c) Small size gold nano-dots obtained from small pore size AAO. d) Large size gold nano-dots obtained from large pore size AAO.
Fig. S2 AFM height image a), and height profile b), of small gold nano-dots on graphene electrode.

Fig. S3 AFM characterizations of large gold nano-dots obtained from AAO templates on Si a); Gold b) and Graphene electrode c).
Fig. S4 Raman spectra of normal graphene electrode and graphene SERS electrode.
Fig. S5 Cyclic voltammogram of the Li-O$_2$ battery with SERS electrodes.
Fig. S6 Discharge curve of the Li-O$_2$ battery with SERS electrodes.