Supporting Information

Synthesis, Structures, and DNA and Protein Binding of Ruthenium(II)-p-Cymene Complexes of Substituted Pyridylimidazo[1,5-a]pyridine: Enhanced Cytotoxicity of Complexes of Ligands Appended with Carbazole Moiety

Themmila Khamranga, Radhakrishnan Kartikeyanc, Marappan Velusamy, a,* Venugopal Rajendiranc, Rajakumar Dhivyad, Balaji Perumalsamy, d Mohammad Abdulkadher Akbarsha, d Mallayan Palaniandavarb,*

aDepartment of Chemistry, North Eastern Hill University, Shillong 793022, India
bDepartment of Chemistry, Bharathidasan University, Tiruchirapalli 620024, India
cDepartment of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610101, India
dMahatma Gandhi-Doerenkamp Center for Alternatives to Use of Animals in Life Science Education, Bharathidasan University, Tiruchirappalli 620024, India

* Corresponding authors.

E-mail addresses: mvelusamy@gmail.com (M. Velusamy), palaniandavarm@gmail.com (M. Palaniandavar)
Figure S1. 1H NMR spectrum of L1 in CDCl$_3$.
Figure S2. 13C NMR spectrum of L1 in CDCl$_3$.
Figure S3. HRMS-ESI for L1, Calcd for $\text{C}_{18}\text{H}_{14}\text{N}_3$: 272.1188 [M+H]$^+$, Found: 272.1182 [M+H]$^+$.
Figure S4. 1H NMR spectrum of L2 in CDCl$_3$.
Figure S5. 13C NMR spectrum of L2 in CDCl$_3$.
Figure S6. HRMS-ESI for L2. Calcd for C\textsubscript{20}H\textsubscript{19}N\textsubscript{4}: 315.1610 [M+H]+, Found: 315.1604 [M+H]+.
Figure S7. 1H NMR spectrum of L3 in CDCl$_3$.
Figure S8. 13C NMR spectrum of L3 in CDCl$_3$.
Figure S9. HRMS-ESI for L3, Calcd for C\textsubscript{30}H\textsubscript{23}N\textsubscript{4}: 439.1923 [M+H]+, Found: 439.1917 [M+H]+.
Figure S10. 1H NMR spectrum of L4 in CDCl$_3$.
Figure S11. 13C NMR spectrum of L4 in CDCl$_3$.
Figure S12. HRMS-ESI for L4. Calcd for C$_{30}$H$_{21}$N$_{4}$: 437.1766 [M+H]*, Found: 437.1761 [M+H]*.
Figure S13. 1H NMR spectrum of L5 in CDCl$_3$.

![Figure S13. 1H NMR spectrum of L5 in CDCl$_3$.](image)
Figure S14. 13C NMR spectrum of L5 in CDCl$_3$.
Figure S15. HRMS-ESI for L5, Calcd for C_{26}H_{21}N_{4}: 389.1766 [M+H]^+, Found: 389.1716 [M+H]^+.
Figure S16. 1H NMR spectrum of L6 in CDCl$_3$.
Figure S17. 13C NMR spectrum of L6 in CDCl$_3$.
Figure S18. HRMS-ESI for L6, Calcld for C_{26}H_{21}N_{4}S: 421.1487 [M+H]^+, Found: 421.1473 [M+H]^+.
Figure S19. 1H NMR spectrum of [Ru(η6-cymene)(L1)Cl]BF$_4$ (I) in CDCl$_3$.
Figure S20. ESI-MASS Spectrum of [Ru(η⁶-cymene)(L1)Cl]BF₄. (1)
Figure S21. 1H NMR spectrum of $[\text{Ru(}\eta^6\text{-cymene})(\text{L}2\text{Cl})\text{BF}_4]$ in DMSO-D$_6$. (2)
Figure S22. ESI-MASS Spectrum of [Ru(η⁶-cymene)(L2)Cl]BF₄. (2)
Figure S23. 1H NMR spectrum of [Ru(η^6-cymene)(L3)Cl]BF$_4$ in DMSO-d_6. (3)
Figure S24. ESI-MASS Spectrum of [Ru(η^6-cymene)(L3)Cl]BF₄. (3)
Figure S25. 1H NMR spectrum of [Ru(η^6-cymene)(L4)Cl]BF$_4$ in CDCl$_3$. (4)
Figure S26. ESI-MASS Spectrum of [Ru(η⁶-cymene)(L4)Cl]BF₄. (4)
Figure S27. 1H NMR spectrum of $[\text{Ru}(\eta^6\text{-cymene})(\text{L}5)\text{Cl}]\text{BF}_4$ in DMSO-D$_6$. (5)
Figure S28. ESI-MASS Spectrum of [Ru(η^6-cymene)(L5)Cl]BF₄. (5)
Figure S29. 1H NMR spectrum of $[\text{Ru}(\eta^6\text{-cymene})(\text{L6})\text{Cl}]\text{BF}_4$ in DMSO-D$_6$. (6)
Figure S30. ESI-MASS Spectrum of [Ru(η⁶-cymene)(L6)Cl]BF₄. (6)