Supporting Information

for

Facile Fabrication of Heterostructured cubic-CuFe$_2$O$_4$/ZnO Nanofibers (c-CFZs) with Enhanced Visible-light Photocatalytic Activity and Magnetic Separation

Chuchu Lu,a Zhimin Bao,a Chuanxiang Qin,*a Lixing Daia and Aiping Zhub

a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China. E-mail: qinchuanxiang@suda.edu.cn; Fax: +86-0512-65883354; Tel: +86-0512-65883354.

b College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, People's Republic of China.
Preparation of c-CuFe$_2$O$_4$ nanofibers.

The c-CuFe$_2$O$_4$ nanofibers were prepared via a simple and economical technique of electrospinning technique combined with coprecipitation method. From figure S1 and S2, the main crystal peak position (311) and the morphology of c-CuFe$_2$O$_4$ nanofibers changed under different temperature. Comparing the results of XRD patterns and SEM images, the c-CuFe$_2$O$_4$ nanofibers prepared at 600 °C was the best calcination temperature.

Figure S1 XRD patterns of c-CuFe$_2$O$_4$ nanofibers prepared under different temperature: (a) 500 °C, (b) 600 °C, (c) 650 °C, (d) 700 °C.

Figure S2 SEM images of c-CuFe$_2$O$_4$ nanofibers prepared under different temperature: (a) 500 °C, (b) 600 °C, (c) 650 °C, (d) 700 °C.
Figure S3 The change of the absorption spectra of RhB solutions with irradiation time under visible light at the presence of c-CFZs.

Figure S4 The changes color of RhB solutions (a) before the degradation: 0 h, (b) after the degradation: 6 h.

Figure S5 XRD patterns of ZnO particles.