Highly Conductive PEDOT:PSS Treated by Sodium Dodecyl Sulfate for Stretchable Fabric Heaters

Changbong Yeon1,2, Gayoung Kim1,2, Jung Wook Lim1,2, and Sun Jin Yun1,2,*

1ICT Materials & Components & Research Laboratory, Electronics and Telecommunications Research Institute, 218 Gajeongno, Yuseong-gu, Daejeon 305-700, Korea
2Department of Advanced Device Engineering, University of Science and Technology, 217 Gajeongno, Yuseong-gu, Daejeon 305-350, Korea

Send correspondence to
Sun Jin Yun*
Director
IT Materials Technology Research Section,
Electronics and Telecommunications Research Institute
Professor, University of Science and Technology
TEL: 82-42-860-5821
Fax: 82-42-860-6495
E-mail: sjyun@etri.re.kr
Supplementary Figure 1.

Fig. S1 (a) Average conductivity and (b) thickness of PEDOT:PSS film blended by ionic agents with various functional groups
Supplementary Figure 2.

Fig. S2 UV-Vis/NIR absorption of SDS solution (40 mM)
Supplementary Figure 3.

Fig. S3 Raman spectra of pristine- and B-PEDOT:PSS films
Supplementary Figure 4.

Fig. S4 Sheet resistance of D-PEDOT:PSS-cotton and BD-PEDOT:PSS-cotton
Supplementary Figure 5.

Fig. S5 Optical images of polyurethane and cotton substrates
Supplementary Figure 6.

Fig. S6 Sheet resistance of BD-PEDOT:PSS-cotton and –polyurethane with respect to the number of coating cycles.
Supplementary Figure 7.

Fig. S7 Schematic of strain experiment for PEDOT:PSS-fabric. Electrodes were formed by using Ag paste.
Fig. S8 SEM images of BD-PEDOT:PSS-polyurethane before and after loading 150% tensile strain.
Supplementary Figure 9.

Fig. S9 Schematic and optical images after stretching SDS modified PEDOT:PSS films spin-coated on PDMS substrate.
Supplementary Figure 10.

Fig. S10 Saturated temperature of BD-PEDOT:PSS-cotton with respect to tensile strain. The dotted and single lines correspond to the calculated and experimental data, respectively. The 12 V was applied at 26 °C.