## Manipulating Energy Storage Characteristics of Ultrathin Boron Carbide Monolayer Under Varied Scandium Doping

S. R. Naqvi,<sup>a</sup> T. Hussain,<sup>\*,c</sup> P. Panigrahi,<sup>d</sup> W. Luo,<sup>a</sup> R. Ahuja<sup>a,b</sup>

<sup>a</sup>Condensed Matter Theory Group, Department of Physics and Astronomy,
Box 516, Uppsala University, SE-75120 Uppsala, Sweden
<sup>b</sup>Applied Materials Physics, Department of Materials and Engineering,
Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
<sup>c</sup>Centre for Theoretical and Computational Molecular Science,
Australian Institute for Bioengineering and Nanotechnology,
The University of Queensland, Brisbane, Qld 4072, Australia
<sup>d</sup>Centre for Clean Energy and Nano Convergence (CENCON), Hindustan University,
Padur, Kelambakkam, Chennai, India



S1 Initial and final geometries of all the possible binding configurations of Sc on  $BC_3$  sheet. Binding energies calculated by van der Waals induced calculations are also given.

## 1. Input Geometry:









S2 Initial and final geometries of all the possible binding configurations of  $H_2$  on  $BC_3@Sc$  sheet. Adsorption energies calculated by van der Waals induced calculations are also given.



S3 Top and side views of Isosurface charge densities of (a)  $BC_3@Sc-H_2$  and (b)  $BC_3@Sc-5H_2$  Cyan and yellow colours indicate the accumulation and depletion of charge respectively.