Supplementary material for

Sorption of perfluorooctane sulfonate and perfluorooctanoate on Polyacrylonitrile fibers-derived activated carbon fibers: In comparison with activated carbon

Wei Chen a, b, c, Xiaoping Zhang a, b, c *, Mairambek Mamadiev a, b, c, Zihao Wang a, b, c

a School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China

b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China

c Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China

*Corresponding author at: School of Environment and Energy, South China University of Technology, Guangzhou 510006, China. Tel.: +86 20 39380569

E-mail addresses: xpzhang@scut.edu.cn.
Table 1 Characteristic parameters of polyacrylonitrile fibers (PANFs)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PANFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average diameter (μm)</td>
<td>17.05</td>
</tr>
<tr>
<td>Tensile strength (eN/dtex)</td>
<td>4.5</td>
</tr>
<tr>
<td>Elongation at break point (%)</td>
<td>16-19</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>1.19</td>
</tr>
<tr>
<td>Linear density (dtex)</td>
<td>1.12-1.33</td>
</tr>
<tr>
<td>Carbon content (%)</td>
<td>65</td>
</tr>
<tr>
<td>Moisture content (%)</td>
<td>0.6-0.9</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>317</td>
</tr>
</tbody>
</table>

Table 2 Characteristic parameters of PANFs-derived PACFs

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PANFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific surface areas (m²/g)</td>
<td>1781.59</td>
</tr>
<tr>
<td>Average diameter (μm)</td>
<td>12.27</td>
</tr>
<tr>
<td>Total pore volume (cm³/g)</td>
<td>0.94</td>
</tr>
<tr>
<td>Carbon content (%)</td>
<td>82</td>
</tr>
<tr>
<td>Ash yield (%)</td>
<td>2-3</td>
</tr>
<tr>
<td>The loss of mass on drying method</td>
<td>35</td>
</tr>
</tbody>
</table>

Sorption kinetics models

Pseudo-first-order and pseudo-second-order kinetics equations are represented as the functions of \(q_t\), \(q_e\) and \(t\), which are given as below\(^1\):

Pseudo-first-order model:

\[
\lg(q_e - q_t) = \frac{k_1}{2.303} \frac{1}{q_e} t
\] (3)

Pseudo-second-order model:

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e} + \frac{1}{q_e} + \frac{t}{v_0 q_e}
\] (4)

Where \(k_1\) (1/h) and \(k_2\) (g/mmol/h) are the sorption rate constants of the pseudo-first-order model and the pseudo-second-order model, respectively. \(v_0\) is the initial adsorption rate (mmol/h/g). Other parameters are defined in equation (1).
Intra-particle diffusion and Boy’s film-diffusion models

The intra-particle diffusion model is shown as below ²:

\[
q_i = K_i t^{0.5} + C_i
\] \hspace{1cm} (5)

Where \(K_i\) is the intra-particle diffusion rate constant (mmol/g·h\(^{1/2}\)) at stage \(i\) and \(C_i\) is the intercept corresponding to stage \(i\), which is proportional to the boundary layer thickness. The values of \(K_i\) and \(C_i\) can be evaluated from the linear plots of \(q_i\) versus \(t^{1/2}\).

The Boy’s film-diffusion model is shown as below ³:

\[
F = 1 - \left(\frac{6}{\pi^2} \right) \exp(-B_t) \] \hspace{1cm} (6)

Where \(F\) is the fractional attainment of equilibrium at different \(t\) (h), and \(B_t\) is a mathematical function of \(F\).

\[
F = \frac{q_e}{q_e} \] \hspace{1cm} (7)

\[
B_t = -0.4977 - \ln(1 - F) \] \hspace{1cm} (8)

Where \(B_t\) can be calculated from equation (8) according to each value of \(F\). The linearity of this plot provides a reliable information to identify that the rates of sorption is controlled by external mass transfer (film diffusion) or intraparticle diffusion.

Sorption isotherm models

The Langmuir and Freundlich model equations are given as below ⁴:

Langmuir model:

\[
q_e = \frac{b q_m C_e}{1 + b C_e} \] \hspace{1cm} (9)
Freundlich model:

\[q_e = K_F C_e^n \] \hspace{1cm} (10)

Where \(C_e \) (mmol/L) and \(q_e \) (mmol/g) are the concentration of PFOS/PFOA in water and adsorbed on adsorbent reaching adsorption equilibrium, respectively. \(K_F \) and \(n \) are Freundlich constants related to adsorption capacity and adsorption intensity of the adsorbents, respectively. \(q_m \) (mmol/g) is the maximum sorption capacity, and \(b \) is the sorption equilibrium constant of Langmuir model related to the affinity of binding sites.

Sorption site energy distributions

The approximate site energy distributions underlying Freundlich isotherm was introduced to relate the differences in sorption isotherms to alteration of energetic characteristics of different adsorbates-adsorbents interactions. It was based on the assumption of condensation approximation and expressed by the following equation (11) \(^5\).

\[\phi(\varepsilon) = \frac{K_F \cdot n \cdot S_w^n}{RT} \exp\left(\frac{-n\varepsilon}{RT}\right) \] \hspace{1cm} (11)

In the equation, \(\varepsilon \) is the net energy that equals to \(E_{\text{total}}-E_S \), where \(E_{\text{total}} \) is the difference of sorption energy to a given site between adsorbate and water, \(S_w \) is the water solubility of the adsorbate, and \(E_S \) is the sorption energy at \(C_e= S_w \). \(R \) is the universal gas constant, and \(T \) is the absolute temperature. Other parameters are defined in equation (10).

References

